{"title":"The Distance to Cubic Symmetry Class as a Polynomial Optimization Problem","authors":"P. Azzi, R. Desmorat, B. Kolev, F. Priziac","doi":"10.1007/s10659-023-10041-w","DOIUrl":null,"url":null,"abstract":"<div><p>Generically, a fully measured elasticity tensor has no material symmetry. For single crystals with a cubic lattice, or for the aeronautics turbine blades superalloys such as Nickel-based CMSX-4, cubic symmetry is nevertheless expected. It is in practice necessary to compute the nearest cubic elasticity tensor to a given raw one. Mathematically formulated, the problem consists in finding the distance between a given tensor and the cubic symmetry stratum.</p><p>It has recently been proved that closed symmetry strata are affine algebraic sets (for any tensorial representation of the rotation group): they are defined by polynomial equations without requirement to polynomial inequalities. Such equations have furthermore been derived explicitly for the closed cubic elasticity stratum. We propose to make use of this mathematical property to formulate the distance to cubic symmetry problem as a polynomial (in fact quadratic) optimization problem, and to derive its quasi-analytical solution using the technique of Gröbner bases. The proposed methodology also applies to cubic Hill elasto-plasticity (where two fourth-order constitutive tensors are involved).</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-023-10041-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Generically, a fully measured elasticity tensor has no material symmetry. For single crystals with a cubic lattice, or for the aeronautics turbine blades superalloys such as Nickel-based CMSX-4, cubic symmetry is nevertheless expected. It is in practice necessary to compute the nearest cubic elasticity tensor to a given raw one. Mathematically formulated, the problem consists in finding the distance between a given tensor and the cubic symmetry stratum.
It has recently been proved that closed symmetry strata are affine algebraic sets (for any tensorial representation of the rotation group): they are defined by polynomial equations without requirement to polynomial inequalities. Such equations have furthermore been derived explicitly for the closed cubic elasticity stratum. We propose to make use of this mathematical property to formulate the distance to cubic symmetry problem as a polynomial (in fact quadratic) optimization problem, and to derive its quasi-analytical solution using the technique of Gröbner bases. The proposed methodology also applies to cubic Hill elasto-plasticity (where two fourth-order constitutive tensors are involved).
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.