Electrifying insights into cardiac arrhythmias: from molecular mechanisms to therapeutic translations

IF 3.6 3区 生物学 Q1 BIOLOGY Interface Focus Pub Date : 2023-12-06 DOI:10.1098/rsfs.2023.0062
M. Trew, Jichao Zhao
{"title":"Electrifying insights into cardiac arrhythmias: from molecular mechanisms to therapeutic translations","authors":"M. Trew, Jichao Zhao","doi":"10.1098/rsfs.2023.0062","DOIUrl":null,"url":null,"abstract":"Disruptions to normal bioelectric rate and rhythm profiles in the heart are cardiac arrhythmias. Their impacts range from minor discomforting symptoms to acute or chronic life-threatening events, with atrial fibrillation increasing the risk of stroke and heart failure, and ventricular arrhythmia associated with sudden cardiac death. To improve mechanistic understandings and advance potential approaches to treatment of arrhythmias, this Interface Focus themed issue on cardiac electrophysiology is a collection of recent studies. They investigate some of the molecular and cellular mechanisms or tissue substrates instigating and maintaining arrhythmia, and discover relevant imaging and signalling biomarkers that assess arrhythmic risks. The studies use imaging, computer simulations, machine learning and both human and animal models in their investigations exploring basic science and strategies for early recognition and improved treatment strategies.","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"23 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2023.0062","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Disruptions to normal bioelectric rate and rhythm profiles in the heart are cardiac arrhythmias. Their impacts range from minor discomforting symptoms to acute or chronic life-threatening events, with atrial fibrillation increasing the risk of stroke and heart failure, and ventricular arrhythmia associated with sudden cardiac death. To improve mechanistic understandings and advance potential approaches to treatment of arrhythmias, this Interface Focus themed issue on cardiac electrophysiology is a collection of recent studies. They investigate some of the molecular and cellular mechanisms or tissue substrates instigating and maintaining arrhythmia, and discover relevant imaging and signalling biomarkers that assess arrhythmic risks. The studies use imaging, computer simulations, machine learning and both human and animal models in their investigations exploring basic science and strategies for early recognition and improved treatment strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心律失常的电光火石:从分子机制到治疗转化
扰乱心脏正常生物电速率和节律的现象就是心律失常。其影响范围从轻微的不适症状到危及生命的急性或慢性事件,其中心房颤动会增加中风和心力衰竭的风险,而室性心律失常则与心脏性猝死有关。为了加深对心律失常机理的了解并推进治疗心律失常的潜在方法,本期 "界面聚焦 "主题期刊汇集了最新的心脏电生理学研究。这些研究调查了诱发和维持心律失常的一些分子和细胞机制或组织基质,并发现了评估心律失常风险的相关成像和信号生物标志物。这些研究利用成像、计算机模拟、机器学习以及人类和动物模型进行调查,探索早期识别和改进治疗策略的基础科学和策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
期刊最新文献
Fundamental constraints to the logic of living systems. The legacy and evolvability of Pere Alberch's ideas. The logic of monsters: development and morphological diversity in stem-cell-based embryo models. Capacity building in porous materials research for sustainable energy applications. Chem4Energy: a consortium of the Royal Society Africa Capacity-Building Initiative.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1