Synthesis, Characterization and Breast Anti-cancer Activity of Iron(II), Cobalt(II), Nickel(II) and Copper(II) Complexes with a Hexadentate Schiff Base Ligand Derived from 2,5-Dihydroxy-1,4-benzoquinone with 5-Amino-2-methylphenol

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY Indonesian Journal of Chemistry Pub Date : 2023-12-06 DOI:10.22146/ijc.85611
Riyam Baqer Ibrahim, S. T. Saad
{"title":"Synthesis, Characterization and Breast Anti-cancer Activity of Iron(II), Cobalt(II), Nickel(II) and Copper(II) Complexes with a Hexadentate Schiff Base Ligand Derived from 2,5-Dihydroxy-1,4-benzoquinone with 5-Amino-2-methylphenol","authors":"Riyam Baqer Ibrahim, S. T. Saad","doi":"10.22146/ijc.85611","DOIUrl":null,"url":null,"abstract":"The complexes of Fe(II), Co(II), Ni(II), and Cu(II) Schiff base ligand derived from 2,5-dihydroxy-1,4-benzoquinone and 5-amino-2-methylphenol were synthesized. The ligand was synthesized by the reaction between the mentioned ketone and amine in 1:2 molar ratio, respectively. The four metal complexes were synthesized by refluxing the ligand with the related metal(II) chloride salts. The synthesized compounds were characterized using FTIR spectroscopy, UV-visible, 1H-NMR, conductivity, atomic absorption, magnetic susceptibility, and thermogravimetric analysis. According to the results, the chelation between metals and ligand occurs with the imine groups and the deprotonated hydroxyl groups of 2,5-dihydroxy-1,4-benzoquinone and 5-amino-2-methylphenol in the ligand. The conductivity test of the four complexes shows the non-electrolytic nature of them. The magnetic susceptibility values of Fe(II), Co(II), Ni(II), and Cu(II) complexes are 4.20, 4.11, 2.97, and 2.34 B.M, respectively. The thermogravimetric and atomic absorption analyses suggest the general chemical formula for the complexes is [M2(L)(H2O)6]. In addition, the ligand and one of its metal complexes (Co(II) complex) were examined against breast cancer cells, and they gave the IC50 of 101.24 and 129.2 µg/mL, respectively. This result suggests that Co(II) complex is a better anti-cancer agent in comparison with the ligand.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.85611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The complexes of Fe(II), Co(II), Ni(II), and Cu(II) Schiff base ligand derived from 2,5-dihydroxy-1,4-benzoquinone and 5-amino-2-methylphenol were synthesized. The ligand was synthesized by the reaction between the mentioned ketone and amine in 1:2 molar ratio, respectively. The four metal complexes were synthesized by refluxing the ligand with the related metal(II) chloride salts. The synthesized compounds were characterized using FTIR spectroscopy, UV-visible, 1H-NMR, conductivity, atomic absorption, magnetic susceptibility, and thermogravimetric analysis. According to the results, the chelation between metals and ligand occurs with the imine groups and the deprotonated hydroxyl groups of 2,5-dihydroxy-1,4-benzoquinone and 5-amino-2-methylphenol in the ligand. The conductivity test of the four complexes shows the non-electrolytic nature of them. The magnetic susceptibility values of Fe(II), Co(II), Ni(II), and Cu(II) complexes are 4.20, 4.11, 2.97, and 2.34 B.M, respectively. The thermogravimetric and atomic absorption analyses suggest the general chemical formula for the complexes is [M2(L)(H2O)6]. In addition, the ligand and one of its metal complexes (Co(II) complex) were examined against breast cancer cells, and they gave the IC50 of 101.24 and 129.2 µg/mL, respectively. This result suggests that Co(II) complex is a better anti-cancer agent in comparison with the ligand.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁(II)、钴(II)、镍(II)和铜(II)与由 2,5-二羟基-1,4-苯醌和 5-氨基-2-甲基苯酚衍生的六价席夫碱配体的配合物的合成、表征和乳腺癌活性
由 2,5-二羟基-1,4-苯醌和 5-氨基-2-甲基苯酚衍生的希夫碱配体的铁(II)、钴(II)、镍(II)和铜(II)配合物得以合成。配体分别由上述酮和胺以 1:2 的摩尔比反应合成。四种金属配合物是通过配体与相关的金属(II)氯盐回流合成的。利用傅立叶变换红外光谱、紫外可见光、1H-NMR、电导率、原子吸收、磁感应强度和热重分析对合成的化合物进行了表征。结果表明,金属与配体之间的螯合作用是通过配体中的亚胺基团和 2,5-二羟基-1,4-苯醌和 5-氨基-2-甲基苯酚的去质子化羟基实现的。四种配合物的电导率测试表明它们具有非电解性质。Fe(II)、Co(II)、Ni(II) 和 Cu(II) 复合物的磁感应强度值分别为 4.20、4.11、2.97 和 2.34 B.M。热重分析和原子吸收分析表明,这些配合物的化学通式为 [M2(L)(H2O)6]。此外,配体及其一种金属配合物(Co(II) 配合物)对乳腺癌细胞的 IC50 分别为 101.24 和 129.2 µg/mL。这一结果表明,与配体相比,Co(II)络合物是一种更好的抗癌剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Indonesian Journal of Chemistry
Indonesian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
106
审稿时长
15 weeks
期刊介绍: Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.
期刊最新文献
Pseudoternary Phase Diagram and Antibacterial Activity of Microemulsion-Based Citronella Oil Antibacterial Activity and CO2 Capture by Cerium-Copper Mixed Oxides Prepared Using a Co-precipitation Method Surface Properties of Graphene and Graphene Oxide Aerogels for Energy Storage Applications Synthesis, Characterization, and Control Release of Zinc Layered Nitrate Intercalated with Beta-Napthoxyacetic Acid (BNOA) Nanocomposite Evaluation of Lead Ion in the Wastewater of the Lifting and Treatment Stations Using ICP-MS and CPE Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1