Multi-channel switching magamp power converter for radio recieving devices

V. Yaskiv, A. Yaskiv
{"title":"Multi-channel switching magamp power converter for radio recieving devices","authors":"V. Yaskiv, A. Yaskiv","doi":"10.23939/jcpee2023.01.039","DOIUrl":null,"url":null,"abstract":"Development of high-quality energy supply of radio receiving devices is an urgent task. The article discusses the methods of designing high-frequency multi-channel power converters based on high-frequency magnetic amplifiers, the magnetic cores of which are made of an amorphous alloy with a rectangular hysteresis loop. Their significant advantages when powering radio receiving devices are the high quality of the output voltages and the low level of electromagnetic interference, both radiated and conductive. At the same time, they have a higher level of dynamic characteristics, reliability and efficiency while reducing their topological complexity and cost. In addition, it allows the implementation of multi-channel power converters with equivalent and independent output channels in a wide range of output powers. The paper presents the implementation of such a converter for powering radio receiving devices.","PeriodicalId":325908,"journal":{"name":"Computational Problems of Electrical Engineering","volume":"115 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Problems of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/jcpee2023.01.039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Development of high-quality energy supply of radio receiving devices is an urgent task. The article discusses the methods of designing high-frequency multi-channel power converters based on high-frequency magnetic amplifiers, the magnetic cores of which are made of an amorphous alloy with a rectangular hysteresis loop. Their significant advantages when powering radio receiving devices are the high quality of the output voltages and the low level of electromagnetic interference, both radiated and conductive. At the same time, they have a higher level of dynamic characteristics, reliability and efficiency while reducing their topological complexity and cost. In addition, it allows the implementation of multi-channel power converters with equivalent and independent output channels in a wide range of output powers. The paper presents the implementation of such a converter for powering radio receiving devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于无线电接收设备的多通道开关式 Magamp 电源转换器
开发无线电接收设备的高质量能源供应是一项紧迫任务。文章讨论了基于高频磁性放大器的高频多通道电源转换器的设计方法,其磁芯由具有矩形磁滞回线的非晶合金制成。在为无线电接收设备供电时,它们的显著优点是输出电压质量高,电磁干扰(包括辐射干扰和传导干扰)水平低。同时,它们具有更高水平的动态特性、可靠性和效率,同时降低了拓扑复杂性和成本。此外,它还允许在宽输出功率范围内实现具有等效和独立输出通道的多通道功率转换器。本文介绍了这种为无线电接收设备供电的转换器的实现情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A mathematical model of a frequency-controlled induction electric drive on the basis of the method of average voltages in integration step Multi-channel switching magamp power converter for radio recieving devices Algebraic-differential equations of a nonlinear pass-through quadripole Evaluation of a snip pruning method for a state-of-the-art face detection model Electron interaction with point defects in CdSe0.35Te0.65: joining of ab initio approach with short-range principle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1