{"title":"Correcting Black Carbon Absorption Measurements with Micro-aethalometer Model 200: Insights from Comparative Analysis","authors":"Wei-lun Zhao, Chun-sheng Zhao","doi":"10.3724/j.1006-8775.2023.030","DOIUrl":null,"url":null,"abstract":": Black carbon (BC) is the strongest visible-light-absorbing aerosol component in the atmosphere, with a significant impact on Earth’s radiative budget. Accurate measurement of BC light absorption is crucial for estimating its radiative effect. The micro-aethalometer model 200 (MA200) by AethLabs, USA, offers high-time-resolution measurement of the multi-wavelength absorption coefficient ( σ ab ) within 1 s, making it widely used in aerial measurement due to its compact size and light weight. However, the reliability of the measured σ ab has not been extensively studied in previous research. In this study, we evaluate the performance of MA200 by comparing σ ab measurements obtained from MA200 with those from the aethalometer model 33 (AE33) by Magee, USA. Our results revealed a significant variation in the determinant coefficient ( R 2 ) between σ ab measurements from MA200 and AE33, depending on the time resolution. The R 2 increases from 0.1 to 0.5 and further to 0.97 as the time resolution of σ ab increases from 1 s to 30 s and 60 s, respectively. We recommend a minimum time resolution of 30 s for stable σ ab measurements using MA200. Moreover, we determine σ ab from attenuation coefficient ( σ ATN ) measured by MA200 as σ ab = ( σ ATN – σ 0 )/ C MA , where σ 0 ranges from – 15.3 Mm –1 to – 6.4 Mm –1 and C MA ranges from 2.65 to 3.21. Correcting the measured σ ab based on the findings of this study can provide reliable results for estimating the radiative effects of BC.","PeriodicalId":17432,"journal":{"name":"热带气象学报","volume":"252 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"热带气象学报","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3724/j.1006-8775.2023.030","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
: Black carbon (BC) is the strongest visible-light-absorbing aerosol component in the atmosphere, with a significant impact on Earth’s radiative budget. Accurate measurement of BC light absorption is crucial for estimating its radiative effect. The micro-aethalometer model 200 (MA200) by AethLabs, USA, offers high-time-resolution measurement of the multi-wavelength absorption coefficient ( σ ab ) within 1 s, making it widely used in aerial measurement due to its compact size and light weight. However, the reliability of the measured σ ab has not been extensively studied in previous research. In this study, we evaluate the performance of MA200 by comparing σ ab measurements obtained from MA200 with those from the aethalometer model 33 (AE33) by Magee, USA. Our results revealed a significant variation in the determinant coefficient ( R 2 ) between σ ab measurements from MA200 and AE33, depending on the time resolution. The R 2 increases from 0.1 to 0.5 and further to 0.97 as the time resolution of σ ab increases from 1 s to 30 s and 60 s, respectively. We recommend a minimum time resolution of 30 s for stable σ ab measurements using MA200. Moreover, we determine σ ab from attenuation coefficient ( σ ATN ) measured by MA200 as σ ab = ( σ ATN – σ 0 )/ C MA , where σ 0 ranges from – 15.3 Mm –1 to – 6.4 Mm –1 and C MA ranges from 2.65 to 3.21. Correcting the measured σ ab based on the findings of this study can provide reliable results for estimating the radiative effects of BC.