A Warming Southern Gulf of Mexico: Reconstruction of Anthropogenic Environmental Changes From a Siderastrea siderea Coral on the Northern Coast of Cuba
M. Harbott, H. C. Wu, H. Kuhnert, C. Jimenez, P. González‐Díaz, T. Rixen
{"title":"A Warming Southern Gulf of Mexico: Reconstruction of Anthropogenic Environmental Changes From a Siderastrea siderea Coral on the Northern Coast of Cuba","authors":"M. Harbott, H. C. Wu, H. Kuhnert, C. Jimenez, P. González‐Díaz, T. Rixen","doi":"10.1029/2023pa004717","DOIUrl":null,"url":null,"abstract":"The Gulf of Mexico is a vital region for the Atlantic Meridional Overturning Circulation (AMOC), that fuels the exchange of heat between the tropics and the polar regions. A weakening of the AMOC would have dire consequences for the planet. First observations and ocean models show that this process has already started. Very limited knowledge of the components that are part of the AMOC such as the Loop Current (LC) make it difficult to understand its dynamics as well as changes in strength or temperature since the onset of the Industrial Revolution. Currently, there are no continuous in situ sea surface temperature or salinity measurements for the southeastern Gulf of Mexico or reconstruction attempts for this region, showing the necessity for high‐resolution climate archives. A Siderastrea siderea coral core was retrieved from the northwestern Cuban coast and used as a sub‐seasonally resolved sea surface temperature and hydroclimate archive. The approach is based on skeletal δ18O, and trace and minor element contents show an increase in temperature over 160 years since 1845 of 2.6–3.3°C. A possible stagnation of the warming trend set in after the 1980s, indicating a potential weakening of the Loop Current. Impacts in sea surface salinity such as El Niño events in the Pacific region can still be detected in the Gulf of Mexico as decreases in salinity in 1998 from the reconstructed δ18OSW coral record. In situ measurements remain crucial to understand the dynamics in the LC and its influence on the AMOC.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":"45 15","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023pa004717","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Gulf of Mexico is a vital region for the Atlantic Meridional Overturning Circulation (AMOC), that fuels the exchange of heat between the tropics and the polar regions. A weakening of the AMOC would have dire consequences for the planet. First observations and ocean models show that this process has already started. Very limited knowledge of the components that are part of the AMOC such as the Loop Current (LC) make it difficult to understand its dynamics as well as changes in strength or temperature since the onset of the Industrial Revolution. Currently, there are no continuous in situ sea surface temperature or salinity measurements for the southeastern Gulf of Mexico or reconstruction attempts for this region, showing the necessity for high‐resolution climate archives. A Siderastrea siderea coral core was retrieved from the northwestern Cuban coast and used as a sub‐seasonally resolved sea surface temperature and hydroclimate archive. The approach is based on skeletal δ18O, and trace and minor element contents show an increase in temperature over 160 years since 1845 of 2.6–3.3°C. A possible stagnation of the warming trend set in after the 1980s, indicating a potential weakening of the Loop Current. Impacts in sea surface salinity such as El Niño events in the Pacific region can still be detected in the Gulf of Mexico as decreases in salinity in 1998 from the reconstructed δ18OSW coral record. In situ measurements remain crucial to understand the dynamics in the LC and its influence on the AMOC.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.