Optimization of low-head shaft tubular pumping systems based on entropy production theory

Yuqi Wang, Weixuan Jiao, Li Cheng, Heng Zhao, Yulan Zhu, C. Luo, Libo Dou
{"title":"Optimization of low-head shaft tubular pumping systems based on entropy production theory","authors":"Yuqi Wang, Weixuan Jiao, Li Cheng, Heng Zhao, Yulan Zhu, C. Luo, Libo Dou","doi":"10.1177/09576509231222670","DOIUrl":null,"url":null,"abstract":"In order to improve the operation efficiency of low-head tubular pump, this paper studies the influence of shaft type in the shaft tubular pump on the flow characteristics and energy characteristics of the pump. To optimize the shaft structure of shaft tubular pumping systems and realize the efficient use of energy, numerical simulation and model test was employed to study the optimization of the entire pumping system. In this paper, the CFD method was used to numerically simulate the whole pumping system, and the effect of changing the shaft length, shaft head profile, and shaft tail profile on the internal flow and entropy production characteristics of the inlet passage and impeller position were analyzed. It is found that the tapered tail profile can make the inlet passage overflow area change more smoothly and thus make the flow pattern more favorable. The wall entropy production dissipation at the inlet passage position dominates the total entropy production, and the high-value area of mainstream entropy production at this position is distributed periodically. The mainstream entropy production dissipation at the impeller section accounts for a relatively large proportion. After the entropy production dissipation analysis, it is believed that the tapered can reduce the entropy production dissipation of the pumping systems. The change of the shaft tail profile will make the entropy production dissipation change more noticeable compared with other optimization factors. Therefore, the tapered tail profile with better transition in the actual project is recommended.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09576509231222670","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to improve the operation efficiency of low-head tubular pump, this paper studies the influence of shaft type in the shaft tubular pump on the flow characteristics and energy characteristics of the pump. To optimize the shaft structure of shaft tubular pumping systems and realize the efficient use of energy, numerical simulation and model test was employed to study the optimization of the entire pumping system. In this paper, the CFD method was used to numerically simulate the whole pumping system, and the effect of changing the shaft length, shaft head profile, and shaft tail profile on the internal flow and entropy production characteristics of the inlet passage and impeller position were analyzed. It is found that the tapered tail profile can make the inlet passage overflow area change more smoothly and thus make the flow pattern more favorable. The wall entropy production dissipation at the inlet passage position dominates the total entropy production, and the high-value area of mainstream entropy production at this position is distributed periodically. The mainstream entropy production dissipation at the impeller section accounts for a relatively large proportion. After the entropy production dissipation analysis, it is believed that the tapered can reduce the entropy production dissipation of the pumping systems. The change of the shaft tail profile will make the entropy production dissipation change more noticeable compared with other optimization factors. Therefore, the tapered tail profile with better transition in the actual project is recommended.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于熵产生理论的低扬程轴管式泵送系统优化
为了提高低扬程管式泵的运行效率,本文研究了轴管式泵中轴型对泵的流量特性和能量特性的影响。为了优化轴管式泵系统的轴结构,实现能量的高效利用,本文采用数值模拟和模型试验的方法研究了整个泵系统的优化问题。本文采用 CFD 方法对整个泵送系统进行了数值模拟,分析了改变轴长、轴头轮廓和轴尾轮廓对入口通道和叶轮位置的内部流动和熵产特性的影响。结果发现,锥形尾部轮廓能使入口通道溢流面积的变化更加平滑,从而使流型更加有利。入口通道位置的壁面产熵耗散在总产熵中占主导地位,该位置的主流产熵高值区呈周期性分布。叶轮部分的主流产熵耗散所占比例相对较大。经过熵产生耗散分析,我们认为锥形可以减少泵送系统的熵产生耗散。与其他优化因素相比,轴尾剖面的变化会使熵产耗散的变化更加明显。因此,建议在实际工程中采用过渡性更好的锥形尾部轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.90%
发文量
114
审稿时长
5.4 months
期刊介绍: The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.
期刊最新文献
Studies on fuels and engine attributes powered by bio-diesel and bio-oil derived from stone apple seed (Aegle marmelos) for bioenergy Analysis of the aerothermal performance of modern commercial high-pressure turbine rotors using different levels of fidelity Analytical modeling and performance improvement of an electric two-stage centrifugal compressor for fuel cell vehicles Investigations into rubbing wear behavior of honeycomb land against labyrinth fin with periodic-cell model Secondary air induced flow structures and their interplay with the temperature field in fixed bed combustors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1