Design and implementation of a new Dewar structure for large-scale and high performance infrared focal plane

Guangquan Zhai, Bocong An, Yue Wang, Xueliang Hu, Jingyuan Li, Dawei Yang
{"title":"Design and implementation of a new Dewar structure for large-scale and high performance infrared focal plane","authors":"Guangquan Zhai, Bocong An, Yue Wang, Xueliang Hu, Jingyuan Li, Dawei Yang","doi":"10.1117/12.3008143","DOIUrl":null,"url":null,"abstract":"With the development of space infrared focal plane detectors towards large-scale, multi spectral, and high integration directions, issues such as heat leakage, micro vibration, and structural thermal adaptation have become increasingly prominent, becoming bottlenecks that restrict the application of large-sized infrared focal plane detectors. By using a new Dewar with a string structure, the support problem of infrared focal plane components has been solved. Through the analysis and verification of force thermal coupling design, the new Dewar structure has effectively reduced heat leakage, Reduced the impact of micro vibrations and avoided detector stress caused by thermal adaptation, providing a solution for the application of high-performance large-sized infrared focal planes.","PeriodicalId":298662,"journal":{"name":"Applied Optics and Photonics China","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3008143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of space infrared focal plane detectors towards large-scale, multi spectral, and high integration directions, issues such as heat leakage, micro vibration, and structural thermal adaptation have become increasingly prominent, becoming bottlenecks that restrict the application of large-sized infrared focal plane detectors. By using a new Dewar with a string structure, the support problem of infrared focal plane components has been solved. Through the analysis and verification of force thermal coupling design, the new Dewar structure has effectively reduced heat leakage, Reduced the impact of micro vibrations and avoided detector stress caused by thermal adaptation, providing a solution for the application of high-performance large-sized infrared focal planes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计并实现用于大规模和高性能红外焦平面的新型杜瓦结构
随着空间红外焦平面探测器向着大规模、多光谱、高集成度方向发展,热泄漏、微振动、结构热适应等问题日益突出,成为制约大型红外焦平面探测器应用的瓶颈。通过采用新型弦结构杜瓦,解决了红外焦平面元件的支撑问题。通过对力热耦合设计的分析和验证,新型杜瓦结构有效减少了热泄漏,降低了微振动的影响,避免了热适应引起的探测器应力,为高性能大型红外焦平面的应用提供了解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Composition disorder in InAs/InAsSb superlattice by STM Optical true time delay technique with bidirectional consistency based on unidirectional optical amplifier Large curvature concave metallic mesh with high optical transmittance and strong electromagnetic interference shielding efficiency DP-OOK to QPSK conversion based on vector phase-sensitive amplification bridging core and access networks Real-time digitized RoF transceiver technology based on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1