A miniature Fourier transform spectrometer based on an electrothermal MEMS mirror with asynchronous calibration

Ruifan Zhao, Qiangqiang Liu, Chao Chen, Jiqiang Cao, Yuan Xue, Donglin Wang, Qian Chen, Huikai Xie
{"title":"A miniature Fourier transform spectrometer based on an electrothermal MEMS mirror with asynchronous calibration","authors":"Ruifan Zhao, Qiangqiang Liu, Chao Chen, Jiqiang Cao, Yuan Xue, Donglin Wang, Qian Chen, Huikai Xie","doi":"10.1117/12.3008011","DOIUrl":null,"url":null,"abstract":"In a MEMS mirror-based dual interference Fourier transform spectrometer (FTS) with a laser interferometer as the position sensing mechanism, making the two interferometers coaxial is very challenging. To solve this problem, a single interference MEMS FTS based on asynchronous calibration is designed. This single interference FTS uses a dichroic mirror to couple a laser beam and a broadband light beam into the same interferometer. Since the two optical beams share the same optical path, they will experience the same change when the position of any optical component along the optical path is adjusted. In data acquisition, the two interference signals are acquired asynchronously by the same InGaAs photodetector. This asynchronous calibration can effectively eliminate the laser coupling issue. According to the experimental results, compared with the dual interference spectrometer, the proposed spectrometer based on asynchronous calibration can improve the spectral repeatability and make the system simpler and lower power consumption.","PeriodicalId":298662,"journal":{"name":"Applied Optics and Photonics China","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3008011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a MEMS mirror-based dual interference Fourier transform spectrometer (FTS) with a laser interferometer as the position sensing mechanism, making the two interferometers coaxial is very challenging. To solve this problem, a single interference MEMS FTS based on asynchronous calibration is designed. This single interference FTS uses a dichroic mirror to couple a laser beam and a broadband light beam into the same interferometer. Since the two optical beams share the same optical path, they will experience the same change when the position of any optical component along the optical path is adjusted. In data acquisition, the two interference signals are acquired asynchronously by the same InGaAs photodetector. This asynchronous calibration can effectively eliminate the laser coupling issue. According to the experimental results, compared with the dual interference spectrometer, the proposed spectrometer based on asynchronous calibration can improve the spectral repeatability and make the system simpler and lower power consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于异步校准电热 MEMS 镜的微型傅立叶变换光谱仪
在基于 MEMS 镜的双干涉傅立叶变换光谱仪(FTS)中,激光干涉仪是位置传感机制,要使两个干涉仪同轴非常具有挑战性。为了解决这个问题,我们设计了一种基于异步校准的单干涉 MEMS FTS。这种单干涉 FTS 使用二向色镜将激光束和宽带光束耦合到同一个干涉仪中。由于两束光共享相同的光路,因此当调整光路上任何光学元件的位置时,它们都将经历相同的变化。在数据采集过程中,两个干涉信号由同一个 InGaAs 光电探测器异步采集。这种异步校准可以有效消除激光耦合问题。实验结果表明,与双干涉光谱仪相比,基于异步校准的光谱仪可以提高光谱重复性,并使系统更简单、功耗更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Composition disorder in InAs/InAsSb superlattice by STM Optical true time delay technique with bidirectional consistency based on unidirectional optical amplifier Large curvature concave metallic mesh with high optical transmittance and strong electromagnetic interference shielding efficiency DP-OOK to QPSK conversion based on vector phase-sensitive amplification bridging core and access networks Real-time digitized RoF transceiver technology based on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1