Forest Insect Outbreak Dynamics: Fractal Properties, Viscous Fingers, and Holographic Principle

IF 2.4 2区 农林科学 Q1 FORESTRY Forests Pub Date : 2023-12-18 DOI:10.3390/f14122459
Vladislav Soukhovolsky, A. Kovalev, O. Tarasova, Yulia Ivanova
{"title":"Forest Insect Outbreak Dynamics: Fractal Properties, Viscous Fingers, and Holographic Principle","authors":"Vladislav Soukhovolsky, A. Kovalev, O. Tarasova, Yulia Ivanova","doi":"10.3390/f14122459","DOIUrl":null,"url":null,"abstract":"During the growth of a forest insect outbreak epicenter, there are processes that involve the formation and expansion of the primary epicenter of forest damage, as well as secondary epicenters—both connected and unconnected to the primary one. This study characterizes outbreak epicenters in terms of their fractal dimensions and “viscous finger” parameters at the epicenter boundary, highlighting their significance in the context of forest insect management. Local outbreak epicenters were found to be characterized by fractal dimension D = 1.4–1.5, and the boundaries of the epicenters were described using the “viscous finger” model. Proposed models were constructed and validated using remote sensing data obtained from MODIS and Sentinel-2 satellites at epicenter sites and boundaries during the outbreak of the Siberian silk moth Dendrolimus sibiricus Tschetverikov from 2014 to 2020 in the Krasnoyarsk region of Russia. The study revealed that the frequency of the mode spectrum of one-stage spatial series of “viscous fingers” corresponds with the data on the development of the outbreak foci area.","PeriodicalId":12339,"journal":{"name":"Forests","volume":" 92","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f14122459","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

During the growth of a forest insect outbreak epicenter, there are processes that involve the formation and expansion of the primary epicenter of forest damage, as well as secondary epicenters—both connected and unconnected to the primary one. This study characterizes outbreak epicenters in terms of their fractal dimensions and “viscous finger” parameters at the epicenter boundary, highlighting their significance in the context of forest insect management. Local outbreak epicenters were found to be characterized by fractal dimension D = 1.4–1.5, and the boundaries of the epicenters were described using the “viscous finger” model. Proposed models were constructed and validated using remote sensing data obtained from MODIS and Sentinel-2 satellites at epicenter sites and boundaries during the outbreak of the Siberian silk moth Dendrolimus sibiricus Tschetverikov from 2014 to 2020 in the Krasnoyarsk region of Russia. The study revealed that the frequency of the mode spectrum of one-stage spatial series of “viscous fingers” corresponds with the data on the development of the outbreak foci area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
森林昆虫爆发动力学:分形特性、粘指和全息原理
在森林昆虫暴发震源的生长过程中,会有森林损害的主震源以及次震源(与主震源有联系或无联系)的形成和扩展过程。本研究从震中边界的分形维度和 "粘性手指 "参数方面描述了疫情震中的特征,强调了它们在森林昆虫管理方面的意义。研究发现,局部疫情震中的分形维数 D = 1.4-1.5,震中边界采用 "粘性指 "模型进行描述。在俄罗斯克拉斯诺亚尔斯克地区 2014-2020 年西伯利亚蚕蛾 Dendrolimus sibiricus Tschetverikov 爆发期间,利用 MODIS 和 Sentinel-2 卫星获取的震源点和震源边界遥感数据,构建并验证了拟议模型。研究发现,"粘性手指 "单级空间序列的模态频谱频率与疫情病灶区的发展数据相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Forests
Forests FORESTRY-
CiteScore
4.40
自引率
17.20%
发文量
1823
审稿时长
19.02 days
期刊介绍: Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Long-Term Patterns in Forest Soil CO2 Flux in a Pacific Northwest Temperate Rainforest Assessment of Climate Change and Land Use/Land Cover Effects on Aralia elata Habitat Suitability in Northeastern China Determination of the Static Bending Properties of Green Beech and Oak Wood by the Frequency Resonance Technique Variations in Physiological and Biochemical Characteristics of Kalidium foliatum Leaves and Roots in Two Saline Habitats in Desert Region Wildfires’ Effect on Soil Properties and Bacterial Biodiversity of Postpyrogenic Histic Podzols (Middle Taiga, Komi Republic)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1