Bayesian implementation of Rogers–Castro model migration schedules: An alternative technique for parameter estimation

IF 2.1 3区 社会学 Q2 DEMOGRAPHY Demographic Research Pub Date : 2023-12-15 DOI:10.4054/demres.2023.49.42
Jessie Yeung, Monica Alexander, Tim Riffe
{"title":"Bayesian implementation of Rogers–Castro model migration schedules: An alternative technique for parameter estimation","authors":"Jessie Yeung, Monica Alexander, Tim Riffe","doi":"10.4054/demres.2023.49.42","DOIUrl":null,"url":null,"abstract":"BACKGROUND The Rogers–Castro model migration schedule is a key model for migration trends over the life course. It is applied in a wide variety of settings by demographers to examine the relationship between age and migration intensity. This model is nonlinear and can have up to 13 parameters, which can make estimation difficult. Existing techniques for parameter estimation can lead to issues such as nonconvergence, sensitivity to initial values, or optimization algorithms that do not reach the global optimum. OBJECTIVE We propose a new method of estimating Rogers–Castro model migration schedule parameters that overcomes most common difficulties.","PeriodicalId":48242,"journal":{"name":"Demographic Research","volume":"3 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demographic Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.4054/demres.2023.49.42","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND The Rogers–Castro model migration schedule is a key model for migration trends over the life course. It is applied in a wide variety of settings by demographers to examine the relationship between age and migration intensity. This model is nonlinear and can have up to 13 parameters, which can make estimation difficult. Existing techniques for parameter estimation can lead to issues such as nonconvergence, sensitivity to initial values, or optimization algorithms that do not reach the global optimum. OBJECTIVE We propose a new method of estimating Rogers–Castro model migration schedule parameters that overcomes most common difficulties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
罗杰斯-卡斯特罗模型迁移时间表的贝叶斯实施:参数估计的替代技术
背景 罗杰斯-卡斯特罗模式的移民时间表是研究生命过程中移民趋势的一个重要模式。人口学家将其广泛应用于研究年龄与迁移强度之间的关系。该模型为非线性模型,可有多达 13 个参数,这给估算带来了困难。现有的参数估计技术可能会导致不收敛、对初始值敏感或优化算法无法达到全局最优等问题。目标 我们提出了一种估算罗杰斯-卡斯特罗模型迁移时间表参数的新方法,克服了大多数常见的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Demographic Research
Demographic Research DEMOGRAPHY-
CiteScore
3.90
自引率
4.80%
发文量
63
审稿时长
28 weeks
期刊介绍: Demographic Research is a free, online, open access, peer-reviewed journal of the population sciences published by the Max Planck Institute for Demographic Research in Rostock, Germany. The journal pioneers an expedited review system. Contributions can generally be published within one month after final acceptance.
期刊最新文献
How do environmental stressors influence migration? A meta-regression analysis of environmental migration literature Lives saved, lives lost, and under-reported COVID-19 deaths: Excess and non-excess mortality in relation to cause-specific mortality during the first year of the COVID-19 pandemic in Sweden Bayesian implementation of Rogers–Castro model migration schedules: An alternative technique for parameter estimation The formal demography of kinship V: Kin loss, bereavement, and causes of death Programmatic access to open statistical data for population studies: The SDMX standard
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1