Jianyang Liu, Ying Quan, Bin Wang, Jinan Shi, Lang Ming, Mingze Li
{"title":"Estimation of Forest Stock Volume Combining Airborne LiDAR Sampling Approaches with Multi-Sensor Imagery","authors":"Jianyang Liu, Ying Quan, Bin Wang, Jinan Shi, Lang Ming, Mingze Li","doi":"10.3390/f14122453","DOIUrl":null,"url":null,"abstract":"Timely and reliable estimation of forest stock volume is essential for sustainable forest management and conservation. Light detection and ranging (LiDAR) data can provide an effective depiction of the three-dimensional structure information of forests, but its large-scale application is hampered by spatial continuity. This study aims to construct a LiDAR sampling framework, combined with multi-sensor imagery, to estimate the regional forest stock volume of natural secondary forests in Northeast China. Two sampling approaches were compared, including systematic sampling and classification-based sampling. First, the forest stock volume was mapped using a combination of field measurement data and full-coverage LiDAR data. Then, the forest stock volume obtained in the first step of estimation was used as a reference value, and optical images and topographic features were combined for secondary modeling to compare the effectiveness and accuracy of different sampling methods, including 12 systematic sampling and classification-based sampling methods. Our results show that the root mean square error (RMSE) of the 12 systematic sampling approaches ranged from 55.81 to 57.42 m3/ha, and the BIAS ranged from 21.55 to 24.89 m3/ha. The classification-based LiDAR sampling approach outperformed systematic sampling, with an RMSE of 55.56 (<55.81 m3/ha) and a BIAS of 20.68 (<21.55 m3/ha). This study compares different LiDAR sampling approaches and explores an effective LiDAR sample collection scheme for estimating forest stock, while balancing cost and accuracy. The classification-based LiDAR sampling approach described in this study is easy to apply and portable and can provide a reference for future LiDAR sample collection.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"9 9","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f14122453","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Timely and reliable estimation of forest stock volume is essential for sustainable forest management and conservation. Light detection and ranging (LiDAR) data can provide an effective depiction of the three-dimensional structure information of forests, but its large-scale application is hampered by spatial continuity. This study aims to construct a LiDAR sampling framework, combined with multi-sensor imagery, to estimate the regional forest stock volume of natural secondary forests in Northeast China. Two sampling approaches were compared, including systematic sampling and classification-based sampling. First, the forest stock volume was mapped using a combination of field measurement data and full-coverage LiDAR data. Then, the forest stock volume obtained in the first step of estimation was used as a reference value, and optical images and topographic features were combined for secondary modeling to compare the effectiveness and accuracy of different sampling methods, including 12 systematic sampling and classification-based sampling methods. Our results show that the root mean square error (RMSE) of the 12 systematic sampling approaches ranged from 55.81 to 57.42 m3/ha, and the BIAS ranged from 21.55 to 24.89 m3/ha. The classification-based LiDAR sampling approach outperformed systematic sampling, with an RMSE of 55.56 (<55.81 m3/ha) and a BIAS of 20.68 (<21.55 m3/ha). This study compares different LiDAR sampling approaches and explores an effective LiDAR sample collection scheme for estimating forest stock, while balancing cost and accuracy. The classification-based LiDAR sampling approach described in this study is easy to apply and portable and can provide a reference for future LiDAR sample collection.
期刊介绍:
Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.