Investigation of residual stress in epoxy-based coatings using X-ray and FEM-ANN techniques

Jasim Haider Hadi
{"title":"Investigation of residual stress in epoxy-based coatings using X-ray and FEM-ANN techniques","authors":"Jasim Haider Hadi","doi":"10.31276/vjste.65(4).54-61","DOIUrl":null,"url":null,"abstract":"Residual stresses play a significant role in the properties and performance of epoxy-based coatings, with their origins rooted in various factors encountered during production and application. This study focuses on quantifying residual stresses in three distinct epoxy-based coatings, commonly used as linings for crude oil storage tanks, namely, pure epoxy, Novolac epoxy, and glass-flake-reinforced epoxy. We employ X-ray diffraction to measure these residual stresses and compare them against predicted values obtained through finite element and artificial neural network methods. Our findings reveal notable differences in residual stresses among the three types of epoxy coatings. Specifically, pure epoxy coatings exhibit higher residual stresses, Novolac epoxy coatings display the lowest, and those reinforced with glass flakes fall in between. Utilising the FEM-ANN model for simulations yields results that closely align with experimental measurements obtained via the X-ray method. Test results demonstrate that the coatings cured at high temperatures have high residual stresses compared to those cured at lower temperatures. Increasing the curing temperature from 10 to 50oC will increase residual stresses by 40.81, 11.085, and 56.98% for coatings reinforced with glass-flake, Novolac, and pure epoxy-based coating, respectively.","PeriodicalId":18650,"journal":{"name":"Ministry of Science and Technology, Vietnam","volume":"335 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ministry of Science and Technology, Vietnam","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31276/vjste.65(4).54-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Residual stresses play a significant role in the properties and performance of epoxy-based coatings, with their origins rooted in various factors encountered during production and application. This study focuses on quantifying residual stresses in three distinct epoxy-based coatings, commonly used as linings for crude oil storage tanks, namely, pure epoxy, Novolac epoxy, and glass-flake-reinforced epoxy. We employ X-ray diffraction to measure these residual stresses and compare them against predicted values obtained through finite element and artificial neural network methods. Our findings reveal notable differences in residual stresses among the three types of epoxy coatings. Specifically, pure epoxy coatings exhibit higher residual stresses, Novolac epoxy coatings display the lowest, and those reinforced with glass flakes fall in between. Utilising the FEM-ANN model for simulations yields results that closely align with experimental measurements obtained via the X-ray method. Test results demonstrate that the coatings cured at high temperatures have high residual stresses compared to those cured at lower temperatures. Increasing the curing temperature from 10 to 50oC will increase residual stresses by 40.81, 11.085, and 56.98% for coatings reinforced with glass-flake, Novolac, and pure epoxy-based coating, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 X 射线和 FEM-ANN 技术研究环氧基涂层中的残余应力
残余应力对环氧基涂料的特性和性能起着重要作用,其根源在于生产和应用过程中遇到的各种因素。本研究的重点是量化三种不同环氧基涂层(常用于原油储罐内衬)中的残余应力,这三种涂层分别是纯环氧基、Novolac 环氧基和玻璃片增强环氧基。我们采用 X 射线衍射法测量这些残余应力,并将其与通过有限元和人工神经网络方法获得的预测值进行比较。我们的研究结果表明,这三种环氧涂层在残余应力方面存在明显差异。具体来说,纯环氧涂层的残余应力较大,Novolac 环氧涂层的残余应力最小,而用玻璃片增强的涂层则介于两者之间。利用 FEM-ANN 模型模拟得出的结果与通过 X 射线方法获得的实验测量结果非常吻合。测试结果表明,与低温固化的涂层相比,高温固化的涂层具有较高的残余应力。将固化温度从 10 摄氏度提高到 50 摄氏度会使使用玻璃鳞片、Novolac 和纯环氧基涂层增强的涂层的残余应力分别增加 40.81%、11.085% 和 56.98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantification of catalpol in root of Rehmannia glutinosa varieties 19 collected in Phu Tho province by high-performance liquid chromatography Morphology, anatomy, and quantitative determination of corosolic acid in Lagerstroemia calyculata Kurz in the Southeast region, Vietnam Prediction of geomechanical changes in faulted rock mass around underground structures subjected to earthquakes Synthesis of TiO2 by hydrothermal method using deep eutectic solvent for application in dye-sensitised solar cell Application of solid-phase extraction materials from ion liquids for the analysis of carbamate pesticide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1