{"title":"A method for standardized wear detection of masks based on key point detection","authors":"Hongqian Hu, Hui Wang, Xuanyin Wang","doi":"10.3233/jcm227007","DOIUrl":null,"url":null,"abstract":"Since the outbreak of COVID-19, wearing masks outside has become a daily habit. In view of the current problems of low accuracy and lack of non-standard detection of mask wearing, a detection method for mask wearing based on key points is proposed. First, the YOLOv7_tiny algorithm is used to detect whether the face is wearing a mask, and the resulting ROI (Region of Interest) is scaled to a fixed size. Then, the key point detection algorithm was adopted to extract 68 key points of the face from the ROI region, and the image segmentation of the mask area is performed simultaneously. Finally, the correspondence between face landmarks and the mask area is used to assess whether the mask is worn correctly. The experimental results show that the average detection speed of this method in the natural environment is about 14FPS, the mAP (mean Average Precision) of whether to wear a mask is 66.34%, and the detection accuracy of whether to wear a mask is 96%, which can effectively meet the actual application requirements.","PeriodicalId":45004,"journal":{"name":"Journal of Computational Methods in Sciences and Engineering","volume":"333 12","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Methods in Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm227007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Since the outbreak of COVID-19, wearing masks outside has become a daily habit. In view of the current problems of low accuracy and lack of non-standard detection of mask wearing, a detection method for mask wearing based on key points is proposed. First, the YOLOv7_tiny algorithm is used to detect whether the face is wearing a mask, and the resulting ROI (Region of Interest) is scaled to a fixed size. Then, the key point detection algorithm was adopted to extract 68 key points of the face from the ROI region, and the image segmentation of the mask area is performed simultaneously. Finally, the correspondence between face landmarks and the mask area is used to assess whether the mask is worn correctly. The experimental results show that the average detection speed of this method in the natural environment is about 14FPS, the mAP (mean Average Precision) of whether to wear a mask is 66.34%, and the detection accuracy of whether to wear a mask is 96%, which can effectively meet the actual application requirements.
期刊介绍:
The major goal of the Journal of Computational Methods in Sciences and Engineering (JCMSE) is the publication of new research results on computational methods in sciences and engineering. Common experience had taught us that computational methods originally developed in a given basic science, e.g. physics, can be of paramount importance to other neighboring sciences, e.g. chemistry, as well as to engineering or technology and, in turn, to society as a whole. This undoubtedly beneficial practice of interdisciplinary interactions will be continuously and systematically encouraged by the JCMSE.