Guidelines for the Integration of Large Language Models in Developing and Refining Interview Protocols

Jessica Parker, Veronica Richard, Kimberly Becker
{"title":"Guidelines for the Integration of Large Language Models in Developing and Refining Interview Protocols","authors":"Jessica Parker, Veronica Richard, Kimberly Becker","doi":"10.46743/2160-3715/2023.6801","DOIUrl":null,"url":null,"abstract":"Rapid advancements in generative artificial intelligence (AI), specifically large language models (LLMs), offer unprecedented opportunities and challenges for qualitative researchers. This paper presents comprehensive guidelines for the ethical and effective use of LLMs in the development and refinement of interview protocols. Through a multidisciplinary lens, this paper explores potential pitfalls, ethical considerations, and best practices to ensure the responsible integration of LLMs in the research process. The guidelines proposed serve not only as a methodological roadmap for researchers but also as a catalyst for dialogue on the ethical dimensions of LLMs in qualitative research. Furthermore, the authors describe and share a web-based application developed to guide users through the stages of the protocol. Ultimately, the paper calls for a collective, informed approach to harness the capabilities of LLMs while upholding the integrity and ethical standards of scholarly research.","PeriodicalId":256338,"journal":{"name":"The Qualitative Report","volume":"142 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Qualitative Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46743/2160-3715/2023.6801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid advancements in generative artificial intelligence (AI), specifically large language models (LLMs), offer unprecedented opportunities and challenges for qualitative researchers. This paper presents comprehensive guidelines for the ethical and effective use of LLMs in the development and refinement of interview protocols. Through a multidisciplinary lens, this paper explores potential pitfalls, ethical considerations, and best practices to ensure the responsible integration of LLMs in the research process. The guidelines proposed serve not only as a methodological roadmap for researchers but also as a catalyst for dialogue on the ethical dimensions of LLMs in qualitative research. Furthermore, the authors describe and share a web-based application developed to guide users through the stages of the protocol. Ultimately, the paper calls for a collective, informed approach to harness the capabilities of LLMs while upholding the integrity and ethical standards of scholarly research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在制定和完善访谈方案时整合大型语言模型的指导原则
生成式人工智能(AI),特别是大型语言模型(LLMs)的快速发展为定性研究人员提供了前所未有的机遇和挑战。本文介绍了在制定和完善访谈协议时如何合乎道德地、有效地使用 LLM 的全面指导原则。通过多学科视角,本文探讨了潜在的隐患、伦理考虑因素和最佳实践,以确保在研究过程中负责任地使用 LLMs。所提出的指导原则不仅是研究人员的方法路线图,也是定性研究中法律硕士伦理问题对话的催化剂。此外,作者还介绍并分享了一个网络应用程序,该程序旨在指导用户完成协议的各个阶段。最后,本文呼吁采用一种集体的、知情的方法来利用法律硕士的能力,同时维护学术研究的完整性和伦理标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Directed Learning in a Qualitative Research Methods Course for Doctoral Students Teaching Staff Mathematics University: Catalyst of the Emotional-Techno-Ontological Logic Navigating Credibility and Approachability in Conflict Zones: Insights from Fieldwork in Nigerian Communities Facing Eco-Violence Using Triangulation and Crystallization to Make Qualitative Studies Trustworthy and Rigorous Qualitative Study of Stakeholder Influence on Environmental Practices: Evidence from the Malaysian Aviation Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1