High performance low power CMOS temperature sensor

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY Journal of Computational Methods in Sciences and Engineering Pub Date : 2023-12-15 DOI:10.3233/jcm-237012
Hua Peng
{"title":"High performance low power CMOS temperature sensor","authors":"Hua Peng","doi":"10.3233/jcm-237012","DOIUrl":null,"url":null,"abstract":"A temperature sensor based on the combination of a temperature variable oscillator and a linear controlled oscillator is proposed, which can realize temperature detection through the characteristic of frequency changing with temperature. The changing frequency is generated by the two oscillators, and by adjusting the frequency linear change, the linearity of the sensor is also increased. Through the frequency digitizer, the digital signal can be output. Compensation through a process compensator improves the accuracy of the sensor after a single point correction. After conducting tests on 15 experimental samples, the accuracy was achieved within ± 1.2∘C across the temperature range of 0 to 125∘C, demonstrating a highly favorable level of precision.","PeriodicalId":45004,"journal":{"name":"Journal of Computational Methods in Sciences and Engineering","volume":"51 7","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Methods in Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-237012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A temperature sensor based on the combination of a temperature variable oscillator and a linear controlled oscillator is proposed, which can realize temperature detection through the characteristic of frequency changing with temperature. The changing frequency is generated by the two oscillators, and by adjusting the frequency linear change, the linearity of the sensor is also increased. Through the frequency digitizer, the digital signal can be output. Compensation through a process compensator improves the accuracy of the sensor after a single point correction. After conducting tests on 15 experimental samples, the accuracy was achieved within ± 1.2∘C across the temperature range of 0 to 125∘C, demonstrating a highly favorable level of precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能、低功耗 CMOS 温度传感器
本文提出了一种基于温度可变振荡器和线性控制振荡器组合的温度传感器,它可以通过频率随温度变化的特性实现温度检测。变化的频率由两个振荡器产生,通过调节频率的线性变化,传感器的线性度也得到了提高。通过频率数字转换器,可以输出数字信号。通过过程补偿器进行补偿,可提高单点校正后传感器的精度。在对 15 个实验样品进行测试后,在 0 至 125∘C 的温度范围内,精度达到了 ± 1.2∘C,显示了非常高的精度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
152
期刊介绍: The major goal of the Journal of Computational Methods in Sciences and Engineering (JCMSE) is the publication of new research results on computational methods in sciences and engineering. Common experience had taught us that computational methods originally developed in a given basic science, e.g. physics, can be of paramount importance to other neighboring sciences, e.g. chemistry, as well as to engineering or technology and, in turn, to society as a whole. This undoubtedly beneficial practice of interdisciplinary interactions will be continuously and systematically encouraged by the JCMSE.
期刊最新文献
Identification and modelling of parameters for the information-physical-social convergence characteristics of user-side flexible resources Application of Internet of Things and multimedia technology in English online teaching Research on prediction model of scaling in ASP flooding based on data mining Diversification of residents’ consumption structure based on ELES model Research on adaptive selection method of radiation sources in passive radar based on GNSS signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1