Optimal Guidance for Orbital Pursuit-Evasion Games Based on Deep Neural Network

Xin Zeng, Weilin Wang, Yurong Huo
{"title":"Optimal Guidance for Orbital Pursuit-Evasion Games Based on Deep Neural Network","authors":"Xin Zeng,&nbsp;Weilin Wang,&nbsp;Yurong Huo","doi":"10.1007/s42423-023-00143-x","DOIUrl":null,"url":null,"abstract":"<div><p>Integrating the artificial intelligence into space missions is attracting increasing attention from scholars. This paper concerns on the optimal guidance problem of orbital pursuit-evasion games, and an optimization method based on the deep neural network (DNN) is proposed to improve the efficiency of solution. First, the problem is formulated by a zero-sum differential game model, which transforms the original problem to a TPBVP. Second, we propose an optimization method using a DNN to generate individual guesses for further optimization through a gradient-based local optimization algorithm. Finally, numerical simulation results show that, after training the DNN with samples generated through the traditional method, the proposed optimization method statistically improves the efficiency over the traditional optimization by roughly two orders of magnitude without losing quality, and it is feasible in different cases.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"6 2-4","pages":"73 - 85"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-023-00143-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating the artificial intelligence into space missions is attracting increasing attention from scholars. This paper concerns on the optimal guidance problem of orbital pursuit-evasion games, and an optimization method based on the deep neural network (DNN) is proposed to improve the efficiency of solution. First, the problem is formulated by a zero-sum differential game model, which transforms the original problem to a TPBVP. Second, we propose an optimization method using a DNN to generate individual guesses for further optimization through a gradient-based local optimization algorithm. Finally, numerical simulation results show that, after training the DNN with samples generated through the traditional method, the proposed optimization method statistically improves the efficiency over the traditional optimization by roughly two orders of magnitude without losing quality, and it is feasible in different cases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的轨道追逐-入侵博弈优化指导
将人工智能融入太空任务越来越受到学者们的关注。本文关注轨道追逃博弈的最优引导问题,并提出了一种基于深度神经网络(DNN)的优化方法,以提高求解效率。首先,用零和微分博弈模型对问题进行表述,将原问题转化为 TPBVP。其次,我们提出了一种使用 DNN 的优化方法,通过基于梯度的局部优化算法,生成用于进一步优化的个体猜测。最后,数值模拟结果表明,在用传统方法生成的样本训练 DNN 后,所提出的优化方法在统计上比传统优化方法提高了大约两个数量级的效率,而且不会降低质量,在不同情况下都是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Research on Overload Characteristics of Projectile Penetrating Layered Protective Structures with High-Velocity Video Information-Based Liquid Rocket Engine Fault Simulation Test Method under Complex Environment Preface Game Strategies Against High Orbit Surveillance Satellites Orbital Rendezvous Guidance Strategy for Time-Sensitive Missions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1