Construction of a dynamic network for retinal vessel segmentation based on computer vision

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY Journal of Computational Methods in Sciences and Engineering Pub Date : 2023-12-15 DOI:10.3233/jcm-237110
Runze Zhang
{"title":"Construction of a dynamic network for retinal vessel segmentation based on computer vision","authors":"Runze Zhang","doi":"10.3233/jcm-237110","DOIUrl":null,"url":null,"abstract":"This paper is focused on the field of computer vision in order to investigate the presentation properties of retinal blood vessels. Combining the structure of convolutional neural networks, activation functions, and common metrics in semantic segmentation, a dynamic network model for retinal vessel segmentation based on computer vision is constructed. The purpose of this paper is to discuss the results of retinal vascular segmentation based on computer vision. The image connection and alignment pattern selection process is also established to match retinal vessel images by computer vision. The performance of the dynamic network constructed here and the results of retinal vessel segmentation were then analyzed in three publicly available datasets, DRIVE (digital retinal images for vessel extraction), CHASE_DB1, and STARE (structured snalysis of the retinal. The ROC (retinopathy online challenge) curves on all three datasets exceeded 0.9, showing high performance, and the area under the PR curve exceeded 0.88. The accuracy of the results for retinal vessel segmentation was around 96%. Based on the semantic segmentation direction in the field of computer vision in this study, the dynamic network for retinal vessel segmentation can be well constructed.","PeriodicalId":45004,"journal":{"name":"Journal of Computational Methods in Sciences and Engineering","volume":"11 8","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Methods in Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-237110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is focused on the field of computer vision in order to investigate the presentation properties of retinal blood vessels. Combining the structure of convolutional neural networks, activation functions, and common metrics in semantic segmentation, a dynamic network model for retinal vessel segmentation based on computer vision is constructed. The purpose of this paper is to discuss the results of retinal vascular segmentation based on computer vision. The image connection and alignment pattern selection process is also established to match retinal vessel images by computer vision. The performance of the dynamic network constructed here and the results of retinal vessel segmentation were then analyzed in three publicly available datasets, DRIVE (digital retinal images for vessel extraction), CHASE_DB1, and STARE (structured snalysis of the retinal. The ROC (retinopathy online challenge) curves on all three datasets exceeded 0.9, showing high performance, and the area under the PR curve exceeded 0.88. The accuracy of the results for retinal vessel segmentation was around 96%. Based on the semantic segmentation direction in the field of computer vision in this study, the dynamic network for retinal vessel segmentation can be well constructed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建基于计算机视觉的视网膜血管分割动态网络
本文侧重于计算机视觉领域,以研究视网膜血管的呈现特性。结合卷积神经网络的结构、激活函数和语义分割中的常用指标,构建了基于计算机视觉的视网膜血管分割动态网络模型。本文旨在讨论基于计算机视觉的视网膜血管分割结果。本文还建立了图像连接和配准模式选择过程,以通过计算机视觉匹配视网膜血管图像。本文构建的动态网络的性能和视网膜血管分割结果随后在三个公开数据集 DRIVE(用于血管提取的数字视网膜图像)、CHASE_DB1 和 STARE(视网膜结构化分析)中进行了分析。三个数据集的 ROC(视网膜病变在线挑战)曲线都超过了 0.9,显示出很高的性能,PR 曲线下的面积超过了 0.88。视网膜血管分割结果的准确率约为 96%。基于本研究中计算机视觉领域的语义分割方向,可以很好地构建用于视网膜血管分割的动态网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
152
期刊介绍: The major goal of the Journal of Computational Methods in Sciences and Engineering (JCMSE) is the publication of new research results on computational methods in sciences and engineering. Common experience had taught us that computational methods originally developed in a given basic science, e.g. physics, can be of paramount importance to other neighboring sciences, e.g. chemistry, as well as to engineering or technology and, in turn, to society as a whole. This undoubtedly beneficial practice of interdisciplinary interactions will be continuously and systematically encouraged by the JCMSE.
期刊最新文献
Identification and modelling of parameters for the information-physical-social convergence characteristics of user-side flexible resources Application of Internet of Things and multimedia technology in English online teaching Research on prediction model of scaling in ASP flooding based on data mining Diversification of residents’ consumption structure based on ELES model Research on adaptive selection method of radiation sources in passive radar based on GNSS signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1