{"title":"Phytic acid-based NP fire retardant and its effect on combustion property of poplar wood","authors":"Shenglei Qin, Yangguang Liu, Xin Shi, Xiaoshuang Shen, Demiao Chu, Shengquan Liu","doi":"10.15376/biores.19.1.955-972","DOIUrl":null,"url":null,"abstract":"To enhance the synergistic effect of phosphorus (P) and nitrogen (N) on flame retardant property, four different phytic acid-based NP flame retardants (FR-PAN) were manufactured using phytic acid and urea with various molar ratios, ranging from 1:3 to 1:12. The FR-PAN water solution was used to impregnate poplar wood under vacuum condition, and the thermal degradation performance of the FR-PAN treated wood were investigated. Compared to untreated wood, the PAN-6 (molar ratio is 1:6) group showed a reduction of 57.1% in total heat release and 80.0% in total smoke release. In the combustion, due to the introduction of P and N, FR-PAN generates O=P/C-O/C-P/C-N bonds, forming highly graphitized char residues, which effectively isolate the entry of oxygen and heat and play a good protective role in the condensed phase. Morphological and chemical analysis of the residual char layer revealed that the introduction of P and N elements formed a more stable hybrid structure, significantly improving the thermal stability of the char layer. Among them, the PAN-6 group exhibited the highest char layer stability, indicating optimal synergistic effects of nitrogen and phosphorus under these conditions.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"7 8","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15376/biores.19.1.955-972","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the synergistic effect of phosphorus (P) and nitrogen (N) on flame retardant property, four different phytic acid-based NP flame retardants (FR-PAN) were manufactured using phytic acid and urea with various molar ratios, ranging from 1:3 to 1:12. The FR-PAN water solution was used to impregnate poplar wood under vacuum condition, and the thermal degradation performance of the FR-PAN treated wood were investigated. Compared to untreated wood, the PAN-6 (molar ratio is 1:6) group showed a reduction of 57.1% in total heat release and 80.0% in total smoke release. In the combustion, due to the introduction of P and N, FR-PAN generates O=P/C-O/C-P/C-N bonds, forming highly graphitized char residues, which effectively isolate the entry of oxygen and heat and play a good protective role in the condensed phase. Morphological and chemical analysis of the residual char layer revealed that the introduction of P and N elements formed a more stable hybrid structure, significantly improving the thermal stability of the char layer. Among them, the PAN-6 group exhibited the highest char layer stability, indicating optimal synergistic effects of nitrogen and phosphorus under these conditions.
期刊介绍:
The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.