An efficient thermal error prediction model using neural networks and key temperature points for gantry machining centers

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Mechanics Pub Date : 2023-12-13 DOI:10.1093/jom/ufad042
Hao-Sung Chiu, Chin-Han Chang, Yu-Chen Huang, Yung-Chieh Lai, Cheng-Jyun Yang, Yu-Bin Chen
{"title":"An efficient thermal error prediction model using neural networks and key temperature points for gantry machining centers","authors":"Hao-Sung Chiu, Chin-Han Chang, Yu-Chen Huang, Yung-Chieh Lai, Cheng-Jyun Yang, Yu-Bin Chen","doi":"10.1093/jom/ufad042","DOIUrl":null,"url":null,"abstract":"\n The gantry machining center is popular for various fabrication, such as milling and tapping. However, thermal errors introduced by the rotation of spindle, workpiece processing, and cooling significantly degrade fabrication precision. The objective of this study is to establish an appropriate and efficient thermal error prediction model for the spindle of gantry machining center. The model will then aid real-time compensation for the error. Firstly, this study presents a systematic strategy for selecting key temperature points on the gantry machining center, reducing the number of required sensors. Subsequently, a thermal error model is developed based on the selected key temperature points. The model will be capable of predicting thermal errors in the x- and z-direction. Finally, this work both validates the thermal error model and exhibits real-time compensation capabilities using a real machine.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufad042","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The gantry machining center is popular for various fabrication, such as milling and tapping. However, thermal errors introduced by the rotation of spindle, workpiece processing, and cooling significantly degrade fabrication precision. The objective of this study is to establish an appropriate and efficient thermal error prediction model for the spindle of gantry machining center. The model will then aid real-time compensation for the error. Firstly, this study presents a systematic strategy for selecting key temperature points on the gantry machining center, reducing the number of required sensors. Subsequently, a thermal error model is developed based on the selected key temperature points. The model will be capable of predicting thermal errors in the x- and z-direction. Finally, this work both validates the thermal error model and exhibits real-time compensation capabilities using a real machine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络和龙门加工中心关键温度点的高效热误差预测模型
龙门加工中心常用于各种加工,如铣削和攻丝。然而,主轴旋转、工件加工和冷却带来的热误差会大大降低加工精度。本研究的目的是为龙门加工中心的主轴建立一个适当而有效的热误差预测模型。该模型将有助于对误差进行实时补偿。首先,本研究提出了在龙门加工中心上选择关键温度点的系统策略,从而减少了所需传感器的数量。随后,根据选定的关键温度点开发了热误差模型。该模型能够预测 X 和 Z 方向的热误差。最后,这项工作不仅验证了热误差模型,还利用实际机床展示了实时补偿功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mechanics
Journal of Mechanics 物理-力学
CiteScore
3.20
自引率
11.80%
发文量
20
审稿时长
6 months
期刊介绍: The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.
期刊最新文献
Auxetic metamaterial inspired by the seesaw motion Damage Creep Model and Application for Sandy Mudstone Considering the Effect of Immersion Deterioration Numerical Study of Motorbike Aerodynamic Wing Kit Power-law fluid annular flows between concentric rotating spheres subject to hydrodynamic slip Numerical Prediction of the Aerodynamics and Aeroacoustics of a 25 kW Horizontal Axis Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1