Lijun Wang, Yongxing Dai, Zekun Chen, Huijian Zhang, Gongning Liu
{"title":"Evaluation of the dynamic additional impact about foundation pit construction on the existing adjacent subway station with the PBA method","authors":"Lijun Wang, Yongxing Dai, Zekun Chen, Huijian Zhang, Gongning Liu","doi":"10.56748/ejse.23525","DOIUrl":null,"url":null,"abstract":"In this paper, relying on the Tianhe East Station project of Guangzhou Subway Line 11, the deformation and mechanical evolution rules about the existing adjacent stations with the pile-beam-arch (PBA) method in the all excavation stages about the new foundation pit is evaluated through numerical calculation method. It was revealed that that the largest displacement about the existing station’s side wall and the middle column reaches 2.1mm and 1.5mm respectively during the excavation about the foundation pit. Due to the impact about construction of the foundation pit, the uplifting phenomenon occurs on the side of the foundation pit, and the maximum uplifting value reaches 0.4mm. When the construction about foundation pit is finished, the whole station floor shows a deformation form of “left lower torsion”, and the largest compressive stresses as well as tensile stresses about the side wall and the bottom plate do not reach the standard limiting value, and the whole is being a relative safe status. With the increase about the excavation depths, the axial forces about the middle column gradually increase to 7016kN, and the incremental axial forces about the middle column after the construction is completed accounts for about 11.7% of the axial force of initial construction. Therefore, the disturbance effect about foundation pit construction on the adjacent station with the PBA method can not be ignored. The research result in this paper may offer some important references for the construction and design of similar cases.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":"51 6","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.23525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, relying on the Tianhe East Station project of Guangzhou Subway Line 11, the deformation and mechanical evolution rules about the existing adjacent stations with the pile-beam-arch (PBA) method in the all excavation stages about the new foundation pit is evaluated through numerical calculation method. It was revealed that that the largest displacement about the existing station’s side wall and the middle column reaches 2.1mm and 1.5mm respectively during the excavation about the foundation pit. Due to the impact about construction of the foundation pit, the uplifting phenomenon occurs on the side of the foundation pit, and the maximum uplifting value reaches 0.4mm. When the construction about foundation pit is finished, the whole station floor shows a deformation form of “left lower torsion”, and the largest compressive stresses as well as tensile stresses about the side wall and the bottom plate do not reach the standard limiting value, and the whole is being a relative safe status. With the increase about the excavation depths, the axial forces about the middle column gradually increase to 7016kN, and the incremental axial forces about the middle column after the construction is completed accounts for about 11.7% of the axial force of initial construction. Therefore, the disturbance effect about foundation pit construction on the adjacent station with the PBA method can not be ignored. The research result in this paper may offer some important references for the construction and design of similar cases.
期刊介绍:
The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.