{"title":"Impact of Artificial Intelligence in Colorectal Polyp Detection and Characterization","authors":"S. Afzalpurkar, Mahesh K Goenka, Rakesh Kochhar","doi":"10.1055/s-0043-1777330","DOIUrl":null,"url":null,"abstract":"Abstract Colorectal cancer (CRC) is the third most common cancer in the world. Colonoscopy has contributed significantly to reduction of incidence and mortality of CRC. Integration of artificial intelligence (AI) into colonoscopy practice has addressed the various shortcomings of screening colonoscopies. AI-assisted colonoscopy will help in real-time recognition of type of polyp with probable histology. This will not only save time but will also help to mitigate human errors. Computer-aided detection and computer-aided characterization are two applications of AI, which are being studied extensively with a goal of improvement of polyp and adenoma detection rates. Several studies are being conducted across the globe, which either involve simple decision-making algorithms or complex patterns through neural networks, which imitate the human brain. Most data are collected retrospectively and the research is limited to single-center studies, which might have bias. Therefore, the future research on AI in colonoscopy should aim to develop more sophisticated convolutional neural network and deep learning models that will help to standardize the practice and ensure the same degree of accuracy with all the colonoscopies, irrespective of experience of performing endoscopists. In this review, we will take a closer look at the current state of AI and its integration into the field of colonoscopy.","PeriodicalId":43098,"journal":{"name":"Journal of Digestive Endoscopy","volume":"36 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digestive Endoscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0043-1777330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Colorectal cancer (CRC) is the third most common cancer in the world. Colonoscopy has contributed significantly to reduction of incidence and mortality of CRC. Integration of artificial intelligence (AI) into colonoscopy practice has addressed the various shortcomings of screening colonoscopies. AI-assisted colonoscopy will help in real-time recognition of type of polyp with probable histology. This will not only save time but will also help to mitigate human errors. Computer-aided detection and computer-aided characterization are two applications of AI, which are being studied extensively with a goal of improvement of polyp and adenoma detection rates. Several studies are being conducted across the globe, which either involve simple decision-making algorithms or complex patterns through neural networks, which imitate the human brain. Most data are collected retrospectively and the research is limited to single-center studies, which might have bias. Therefore, the future research on AI in colonoscopy should aim to develop more sophisticated convolutional neural network and deep learning models that will help to standardize the practice and ensure the same degree of accuracy with all the colonoscopies, irrespective of experience of performing endoscopists. In this review, we will take a closer look at the current state of AI and its integration into the field of colonoscopy.
期刊介绍:
The Journal of Digestive Endoscopy (JDE) is the official publication of the Society of Gastrointestinal Endoscopy of India that has over 1500 members. The society comprises of several key clinicians in this field from different parts of the country and has key international speakers in its advisory board. JDE is a double-blinded peer-reviewed, print and online journal publishing quarterly. It focuses on original investigations, reviews, case reports and clinical images as well as key investigations including but not limited to cholangiopancreatography, fluoroscopy, capsule endoscopy etc.