{"title":"Theory and algorithms for learning with rejection in binary classification","authors":"Corinna Cortes, Giulia DeSalvo, Mehryar Mohri","doi":"10.1007/s10472-023-09899-2","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a novel framework for classification with a rejection option that consists of simultaneously learning two functions: a classifier along with a rejection function. We present a full theoretical analysis of this framework including new data-dependent learning bounds in terms of the Rademacher complexities of the classifier and rejection families as well as consistency and calibration results. These theoretical guarantees guide us in designing new algorithms that can exploit different kernel-based hypothesis sets for the classifier and rejection functions. We compare our general framework with the special case of confidence-based rejection for which we also devise alternative loss functions and algorithms. We report the results of several experiments showing that our kernel-based algorithms can yield a notable improvement over the best existing confidence-based rejection algorithm.</p></div>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"92 2","pages":"277 - 315"},"PeriodicalIF":1.2000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10472-023-09899-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a novel framework for classification with a rejection option that consists of simultaneously learning two functions: a classifier along with a rejection function. We present a full theoretical analysis of this framework including new data-dependent learning bounds in terms of the Rademacher complexities of the classifier and rejection families as well as consistency and calibration results. These theoretical guarantees guide us in designing new algorithms that can exploit different kernel-based hypothesis sets for the classifier and rejection functions. We compare our general framework with the special case of confidence-based rejection for which we also devise alternative loss functions and algorithms. We report the results of several experiments showing that our kernel-based algorithms can yield a notable improvement over the best existing confidence-based rejection algorithm.
期刊介绍:
Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning.
The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors.
Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.