Wave field structure and power coupling features of blue-core helicon plasma driven by various antenna geometries and frequencies

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Chinese Physics B Pub Date : 2023-12-12 DOI:10.1088/1674-1056/ad1486
Chao Wang, Jia Liu, Lei Chang, Ling-Feng Lu, Shi-Jie Zhang, Fan-Tao Zhou
{"title":"Wave field structure and power coupling features of blue-core helicon plasma driven by various antenna geometries and frequencies","authors":"Chao Wang, Jia Liu, Lei Chang, Ling-Feng Lu, Shi-Jie Zhang, Fan-Tao Zhou","doi":"10.1088/1674-1056/ad1486","DOIUrl":null,"url":null,"abstract":"\n This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies. It is found that compared to non-blue-core mode, for blue-core mode, the wave can propagate in the core region, and it decays sharply outside the core. The power absorption is lower and steeper in radius for blue-core mode. Regarding the effects of antenna geometry for blue-core mode, it shows that half helix antenna yields the strongest wave field and power absorption, while loop antenna yields the lowest. Moreover, near axis, for antennas with m = +1, the wave field increases with axial distance. In the core region, the wave number approaches to a saturation value at much lower frequency for non-blue-core mode compared to blue-core mode. The total loading resistance is much lower for blue-core mode. These findings are valuable to understanding the physics of blue-core helicon discharge and optimizing the experimental performance of blue-core helicon plasma sources for applications such as space propulsion and material treatment.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"4 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad1486","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies. It is found that compared to non-blue-core mode, for blue-core mode, the wave can propagate in the core region, and it decays sharply outside the core. The power absorption is lower and steeper in radius for blue-core mode. Regarding the effects of antenna geometry for blue-core mode, it shows that half helix antenna yields the strongest wave field and power absorption, while loop antenna yields the lowest. Moreover, near axis, for antennas with m = +1, the wave field increases with axial distance. In the core region, the wave number approaches to a saturation value at much lower frequency for non-blue-core mode compared to blue-core mode. The total loading resistance is much lower for blue-core mode. These findings are valuable to understanding the physics of blue-core helicon discharge and optimizing the experimental performance of blue-core helicon plasma sources for applications such as space propulsion and material treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同天线几何结构和频率驱动的蓝核螺旋子等离子体的波场结构和功率耦合特征
本文讨论了不同天线和频率驱动的蓝核螺旋子等离子体中的波传播和功率耦合。研究发现,与非蓝核模式相比,蓝核模式的波可以在核心区域传播,并在核心之外急剧衰减。蓝芯模式的功率吸收较低,半径较陡。天线几何形状对蓝核模式的影响表明,半螺旋天线产生的波场和功率吸收最强,而环形天线产生的波场和功率吸收最小。此外,在轴附近,对于 m = +1 的天线,波场随轴向距离的增加而增大。在核心区域,非蓝核模式的波数接近饱和值的频率远低于蓝核模式。蓝芯模式的总负载电阻要小得多。这些发现对于理解蓝核螺旋子放电的物理原理以及优化蓝核螺旋子等离子体源在太空推进和材料处理等应用领域的实验性能非常有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Physics B
Chinese Physics B 物理-物理:综合
CiteScore
2.80
自引率
23.50%
发文量
15667
审稿时长
2.4 months
期刊介绍: Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics. Subject coverage includes: Condensed matter physics and the physics of materials Atomic, molecular and optical physics Statistical, nonlinear and soft matter physics Plasma physics Interdisciplinary physics.
期刊最新文献
Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator Probing nickelate superconductors at atomic scale: A STEM review In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits Quantum confinement of carriers in the type-I quantum wells structure Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1