Synthesis of silicon-carbon films by induction-assisted plasma-chemical deposition

A. A. Temirov, I. Kubasov, A. Turutin, T. Ilina, A. Kislyuk, Dmitry A. Kiselev, E. A. Skryleva, Nikolai A. Sobolev, I. A. Salimon, Nikolai V. Batrameev, M. D. Malinkovich, Yuri N. Parkhomenko
{"title":"Synthesis of silicon-carbon films by induction-assisted plasma-chemical deposition","authors":"A. A. Temirov, I. Kubasov, A. Turutin, T. Ilina, A. Kislyuk, Dmitry A. Kiselev, E. A. Skryleva, Nikolai A. Sobolev, I. A. Salimon, Nikolai V. Batrameev, M. D. Malinkovich, Yuri N. Parkhomenko","doi":"10.3897/j.moem.9.4.116552","DOIUrl":null,"url":null,"abstract":"Silicon-carbon films are of great interest as diamond-like materials combining unique properties, e.g. high hardness, adhesion to a wide range of materials, abrasion resistance, chemical resistance, low friction coefficient and biocompatibility. The presence of silicon in the films significantly reduces their inner mechanical stress as compared to diamond films. Currently, the films are used in industry, primarily, as solid lubricants and protective coatings. There are a large number of silicon-carbon film synthesis methods the most widely used of which are various options of chemical vapor deposition. A new silicon-carbon film synthesis technique has been suggested and tested. The technique is based on the use of high-frequency induction for obtaining plasma of silicon and carbon vapors supplied to the reaction chamber from an external source. Impurity-free silicon-carbon films containing 63–65 % carbon atoms with sp3 orbital hybridization have been synthesized on Sitall substrates. The composition, surface roughness and friction coefficient of the impurity-free silicon-carbon films synthesized using the suggested technology have been studied. The possibility of implementing resistive switching in thin silicon-carbon films in cross-bar structures with metallic electrodes has been analyzed.","PeriodicalId":18610,"journal":{"name":"Modern Electronic Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/j.moem.9.4.116552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon-carbon films are of great interest as diamond-like materials combining unique properties, e.g. high hardness, adhesion to a wide range of materials, abrasion resistance, chemical resistance, low friction coefficient and biocompatibility. The presence of silicon in the films significantly reduces their inner mechanical stress as compared to diamond films. Currently, the films are used in industry, primarily, as solid lubricants and protective coatings. There are a large number of silicon-carbon film synthesis methods the most widely used of which are various options of chemical vapor deposition. A new silicon-carbon film synthesis technique has been suggested and tested. The technique is based on the use of high-frequency induction for obtaining plasma of silicon and carbon vapors supplied to the reaction chamber from an external source. Impurity-free silicon-carbon films containing 63–65 % carbon atoms with sp3 orbital hybridization have been synthesized on Sitall substrates. The composition, surface roughness and friction coefficient of the impurity-free silicon-carbon films synthesized using the suggested technology have been studied. The possibility of implementing resistive switching in thin silicon-carbon films in cross-bar structures with metallic electrodes has been analyzed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过感应辅助等离子体化学沉积法合成硅碳薄膜
硅碳薄膜作为兼具高硬度、与多种材料的粘附性、耐磨性、耐化学性、低摩擦系数和生物相容性等独特性能的类金刚石材料,引起了人们的极大兴趣。与金刚石薄膜相比,硅在薄膜中的存在大大降低了其内部机械应力。目前,这种薄膜在工业中主要用作固体润滑剂和保护涂层。硅碳薄膜的合成方法有很多,其中使用最广泛的是各种化学气相沉积法。我们提出并测试了一种新的硅碳薄膜合成技术。该技术的基础是利用高频感应来获得从外部供应到反应室的硅和碳蒸汽等离子体。在 Sitall 基底上合成了不含杂质的硅碳薄膜,其中碳原子含量为 63-65%,具有 sp3 轨道杂化。研究了使用建议技术合成的无杂质硅碳薄膜的成分、表面粗糙度和摩擦系数。分析了在带有金属电极的交叉条结构中实现硅碳薄膜电阻开关的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Synaptic behavior of a composite multiferroic heterostructure FeBSiC – PZT at resonant excitation Optically transparent highly conductive contact based on ITO and copper metallization for solar cells Electrophysical properties, memristive and resistive switching of charged domain walls in lithium niobate Crystalline structure of 0.65BiFeO3–0.35Ba1-xSrxTiO3 solid solutions in the vicinity of the morphotropic phase boundary Synthesis and piezoelectric properties of freestanding ferroelectric films based on barium strontium titanate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1