Frictional properties of red pine cones harvested under different conditions

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Bioresources Pub Date : 2023-12-08 DOI:10.15376/biores.19.1.766-788
Yunze Ren, Chi Teng, Tong Gao, Ying Zhang, Hui Liu, Xibin Dong
{"title":"Frictional properties of red pine cones harvested under different conditions","authors":"Yunze Ren, Chi Teng, Tong Gao, Ying Zhang, Hui Liu, Xibin Dong","doi":"10.15376/biores.19.1.766-788","DOIUrl":null,"url":null,"abstract":"The climbing of trees to pick pinecones is a high-risk exercise. In this study, a mechanical gripper jaw was designed. Frictional characteristics between the pinecones and the mechanical gripper jaw during pinecone picking under different conditions were investigated using a workbench simulation, homemade inclined friction meter, and mass tester. Three-level orthogonal and one-factor tests were conducted. The relationship between the water content and friction properties and between the water content and hardness were investigated, and conclusions were drawn on how water content affected friction properties by influencing hardness. The results showed that the contact material greatly affected the friction properties. The pinecone water content was maintained between 24% and 28% to ensure that the coefficient of friction was maximized and that the pinecones were sufficiently hard to dislodge. Additionally, a prototype machine was used to perform pinecone-gripping experiments to validate the experimental and simulation results. Consequently, the results of this study provide a useful reference for the structural design of pinecone picking robots and the picking reason.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"179 ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15376/biores.19.1.766-788","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

The climbing of trees to pick pinecones is a high-risk exercise. In this study, a mechanical gripper jaw was designed. Frictional characteristics between the pinecones and the mechanical gripper jaw during pinecone picking under different conditions were investigated using a workbench simulation, homemade inclined friction meter, and mass tester. Three-level orthogonal and one-factor tests were conducted. The relationship between the water content and friction properties and between the water content and hardness were investigated, and conclusions were drawn on how water content affected friction properties by influencing hardness. The results showed that the contact material greatly affected the friction properties. The pinecone water content was maintained between 24% and 28% to ensure that the coefficient of friction was maximized and that the pinecones were sufficiently hard to dislodge. Additionally, a prototype machine was used to perform pinecone-gripping experiments to validate the experimental and simulation results. Consequently, the results of this study provide a useful reference for the structural design of pinecone picking robots and the picking reason.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不同条件下收获的红松球果的摩擦特性
爬树摘松果是一项高风险运动。本研究设计了一种机械夹爪。使用工作台模拟、自制倾斜摩擦仪和质量测试仪研究了在不同条件下采摘松果时松果与机械夹爪之间的摩擦特性。进行了三级正交试验和单因素试验。研究了含水量与摩擦性能之间的关系以及含水量与硬度之间的关系,并就含水量如何通过影响硬度来影响摩擦性能得出了结论。结果表明,接触材料对摩擦性能有很大影响。松果的含水量保持在 24% 到 28% 之间,以确保摩擦系数最大化,松果足够坚硬,不易脱落。此外,还使用原型机进行了松果夹持实验,以验证实验和模拟结果。因此,本研究的结果为松果采摘机器人的结构设计和采摘原因提供了有益的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioresources
Bioresources 工程技术-材料科学:纸与木材
CiteScore
2.90
自引率
13.30%
发文量
397
审稿时长
2.3 months
期刊介绍: The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.
期刊最新文献
Solid-state fermentation for gossypol detoxification and nutritive enrichment of cottonseed cake: A scale-up of batch fermentation process Crystallinity and chemical structure of Amazon wood species in a log yard after natural degradation Aquatic aerobic biodegradation of commonly flushed materials in aerobic wastewater treatment plant solids Mechanical and thermo-mechanical behaviors of snake grass fiber-reinforced epoxy composite Lignin-derived lithiophilic nitrogen-doped three-dimensional porous carbon as lithium growth guiding layers for lithium-metal batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1