Stefan Herrmann , Lukas T. Hirschwald , Karl H. Heidmann , John Linkhorst , Matthias Wessling
{"title":"Lab-scale tubular LED UV reactor for continuous photocatalysis","authors":"Stefan Herrmann , Lukas T. Hirschwald , Karl H. Heidmann , John Linkhorst , Matthias Wessling","doi":"10.1016/j.ohx.2023.e00506","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic water treatment is considered a promising technique to prevent micropollutants from entering the environment. However, no off-the-shelf UV reactors on lab scale are available to study new processes and photocatalysts. In this study, we present a tubular UV reactor equipped with 30 UV-LEDs, emitting UV light at 367 nm and a total radiant flux of 42<!--> <!-->W. The UV reactor has an irradiated length of 300 mm and can host any transparent chemical reactor on the inside with a maximum diameter of 28 mm. The device is optimized for lab experiments with total dimensions of just 334 mm x 193 mm x 172 mm. Besides water treatment, a broad range of other photochemical and photocatalytic experiments can be performed with the reactor. Two identical UV reactors have been built and are successfully used for photocatalytic water treatment experiments. The degradation of methylene blue with TiO<sub>2</sub> as photocatalyst was studied to validate the UV reactor. Furthermore, photocatalytic and hybrid processes were conducted in the UV reactor to degrade a broad range of pharmaceutical micropollutants.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S246806722300113X/pdfft?md5=e9a404e9af7789e2f42104c7c984aa54&pid=1-s2.0-S246806722300113X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246806722300113X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic water treatment is considered a promising technique to prevent micropollutants from entering the environment. However, no off-the-shelf UV reactors on lab scale are available to study new processes and photocatalysts. In this study, we present a tubular UV reactor equipped with 30 UV-LEDs, emitting UV light at 367 nm and a total radiant flux of 42 W. The UV reactor has an irradiated length of 300 mm and can host any transparent chemical reactor on the inside with a maximum diameter of 28 mm. The device is optimized for lab experiments with total dimensions of just 334 mm x 193 mm x 172 mm. Besides water treatment, a broad range of other photochemical and photocatalytic experiments can be performed with the reactor. Two identical UV reactors have been built and are successfully used for photocatalytic water treatment experiments. The degradation of methylene blue with TiO2 as photocatalyst was studied to validate the UV reactor. Furthermore, photocatalytic and hybrid processes were conducted in the UV reactor to degrade a broad range of pharmaceutical micropollutants.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.