High-performance photoelectrochemical cells with MoS2 nanoflakes/TiO2 photoanode on 3D porous carbon spun fabric

Hyunjin Cho , Ji-Yeon Kim , Dong Su Shin , Joo Song Lee , Jaeho Shim , In-Ho Lee , Won Kook Choi , Namhee Kwon , Soohyung Park , Mehmet Suha Yazici , Young Jae Park , Ju Hee You , Seok-Ho Seo , Donghee Park , Dong Ick Son
{"title":"High-performance photoelectrochemical cells with MoS2 nanoflakes/TiO2 photoanode on 3D porous carbon spun fabric","authors":"Hyunjin Cho ,&nbsp;Ji-Yeon Kim ,&nbsp;Dong Su Shin ,&nbsp;Joo Song Lee ,&nbsp;Jaeho Shim ,&nbsp;In-Ho Lee ,&nbsp;Won Kook Choi ,&nbsp;Namhee Kwon ,&nbsp;Soohyung Park ,&nbsp;Mehmet Suha Yazici ,&nbsp;Young Jae Park ,&nbsp;Ju Hee You ,&nbsp;Seok-Ho Seo ,&nbsp;Donghee Park ,&nbsp;Dong Ick Son","doi":"10.1016/j.asems.2023.100088","DOIUrl":null,"url":null,"abstract":"<div><p>A solar-driven photoelectrochemical (PEC) cell is emerging as one of the promising clean hydrogen generation systems. Engineering of semiconductor heterojunctions and surface morphologies of photoelectrodes in a PEC cell has been a primitive approach to boost its performance. This study presents that a molybdenum disulfide (MoS<sub>2</sub>) nanoflakes photoanode on 3-dimensional (3D) porous carbon spun fabric (CSF) as a substrate effectively enhances hydrogen generations due to sufficiently enlarged surface area. MoS<sub>2</sub> is grown on CSFs utilizing a hydrothermal method. Among three different MoS<sub>2</sub> coating morphologies depending on the amount of MoS<sub>2</sub> precursor and hydrothermal growth time, film shape MoS<sub>2</sub> on CSFs had the largest surface area, exhibiting the highest photocurrent density of 26.48 mA/cm<sup>2</sup> and the highest applied bias photon-to-current efficiency (ABPE) efficiency of 5.32% at 0.43 V<sub>RHE</sub>. Furthermore, with a two-step growth method of sputtering and a subsequent hydrothermal coating, continuous TiO<sub>2</sub>/MoS<sub>2</sub> heterojunctions on a porous CSF further promoted the photoelectrochemical performances due to their optimized bandgap alignments. Enlarged surface area, enhanced charge transfer, and utilization of visible light enable a highly efficient MoS<sub>2</sub>/TiO<sub>2</sub>/CSF photoanode with a photocurrent density of 33.81 mA/cm<sup>2</sup> and an ABPE of 6.97 % at 0.87 V<sub>RHE</sub>. The hydrogen generation amount of the PEC cell with MoS<sub>2</sub>/TiO<sub>2</sub>/CSF photoanode is 225.4 μmol/L after light irradiation of 60 s.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 1","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X23000432/pdfft?md5=dfbe458e53befd47151cb66275a0ba39&pid=1-s2.0-S2773045X23000432-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X23000432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A solar-driven photoelectrochemical (PEC) cell is emerging as one of the promising clean hydrogen generation systems. Engineering of semiconductor heterojunctions and surface morphologies of photoelectrodes in a PEC cell has been a primitive approach to boost its performance. This study presents that a molybdenum disulfide (MoS2) nanoflakes photoanode on 3-dimensional (3D) porous carbon spun fabric (CSF) as a substrate effectively enhances hydrogen generations due to sufficiently enlarged surface area. MoS2 is grown on CSFs utilizing a hydrothermal method. Among three different MoS2 coating morphologies depending on the amount of MoS2 precursor and hydrothermal growth time, film shape MoS2 on CSFs had the largest surface area, exhibiting the highest photocurrent density of 26.48 mA/cm2 and the highest applied bias photon-to-current efficiency (ABPE) efficiency of 5.32% at 0.43 VRHE. Furthermore, with a two-step growth method of sputtering and a subsequent hydrothermal coating, continuous TiO2/MoS2 heterojunctions on a porous CSF further promoted the photoelectrochemical performances due to their optimized bandgap alignments. Enlarged surface area, enhanced charge transfer, and utilization of visible light enable a highly efficient MoS2/TiO2/CSF photoanode with a photocurrent density of 33.81 mA/cm2 and an ABPE of 6.97 % at 0.87 VRHE. The hydrogen generation amount of the PEC cell with MoS2/TiO2/CSF photoanode is 225.4 μmol/L after light irradiation of 60 s.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在三维多孔碳纺丝织物上使用 MoS2 纳米薄片/二氧化钛光阳极的高性能光电化学电池
太阳能驱动的光电化学(PEC)电池正在成为前景广阔的清洁制氢系统之一。对光电化学电池中的半导体异质结和光电极表面形态进行设计是提高其性能的一种原始方法。本研究表明,以三维(3D)多孔碳纺丝织物(CSF)为基底的二硫化钼(MoS2)纳米薄片光阳极由于表面积充分增大,可有效提高氢气生成量。MoS2 是利用水热法在 CSF 上生长的。根据 MoS2 前体的用量和水热生长时间的不同,在三种不同的 MoS2 涂层形态中,CSF 上的膜状 MoS2 具有最大的表面积,在 0.43 VRHE 条件下,其光电流密度最高,为 26.48 mA/cm2,外加偏置光子对电流效率(ABPE)最高,为 5.32%。此外,通过溅射和随后的水热涂层两步生长法,多孔 CSF 上的连续 TiO2/MoS2 异质结因其优化的带隙排列而进一步提高了光电化学性能。扩大的表面积、增强的电荷转移以及对可见光的利用,使得高效的 MoS2/TiO2/CSF 光阳极在 0.87 VRHE 时的光电流密度达到 33.81 mA/cm2,ABPE 为 6.97%。采用 MoS2/TiO2/CSF 光阳极的 PEC 电池在光照射 60 秒后的制氢量为 225.4 μmol/L。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design, development and testing of a wearable hybrid energy harvester for sustainable gadgets Recent applications and challenges of inorganic nanomaterial-based biosensing devices for detecting nucleic acid biomarkers Optical fiber sensor solutions for in-situ transmittance control of electrochromic glazing DNA-templated fabrication of metal nanostructures with special shapes Non-thiolated spherical nucleic acids for biosensors and assembly of nanomaterials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1