It is economically desirable to develop a material that can simultaneously detect and recover uranium. Herein, a CC-bridged two-dimensional metal-covalent organic framework (Cu-BTAN-AO MCOF) was constructed by condensation of metal single crystals with a rigid structure (Cu3(PyCA)3) and cyano monomers (BTAN) via Knoevenagel reaction for simultaneous detection and adsorption of uranium. The amidoxime group within the pore and the presence of unsaturated Cu(I) in the framework facilitate the adsorption of uranyl ions onto the amidoxime group, leading to fluorescence quenching via the photoinduced electron transfer (PET) mechanism, achieving a detection limit of as low as 167 nM uranyl ions. Furthermore, Cu-BTAN-AO demonstrates exceptional efficiency in capturing uranium from wastewater characterized by rapid kinetics and superior selectivity. It is noteworthy that Cu-BTAN-AO is the first example of simultaneous detection, adsorption and chemical reduction of uranium using metal centers and functional groups in MCOF, indicating that Cu-BTAN-AO has great potential for the detection and recovery of uranium-containing wastewater. This design strategy may also be applicable to advancing sensing and energy materials for other important metal ions.
Spherical nucleic acids (SNAs) are a 3D spherical nanostructure composed of highly oriented, dense layers of oligonucleotides conjugated to a hollow or solid core. This structure allows SNAs to show resistance to nuclease degradation, enter into nearly all cells without transfection agents and enable precise interactions with target molecules. Based on superior biological properties, SNAs can be tailored for diverse biological applications, rendering them a flexible and biosafe tool for biological applications as well as an enabling platform for therapy. In this review, we mainly discuss the structure and conjugation mode of SNAs and focus on recent advances in their applications, such as biomedical detection, imaging, and drug delivery. Finally, the remaining challenges and future directions of SNAs are also discussed and proposed.
Although immobilization-free and label-free electrochemical DNA (E-DNA) biosensors have engaged tremendous interest due to their superior properties, such as easy operation, time-saving and cost-saving, most of them are fabricated in homogeneous modes and usually produce high background current. In the present work, we proposed a new immobilization-free and label-free heterogeneous E-DNA assay based on a dual-blocker-aided multibranched hybridization chain reaction (HCR) for one-pot nucleic acid detection with zero background. The target nucleic acid triggers the HCR involving cascaded hybridization between two metastable hairpins, resulting in the generation of HCR products with multibranched arms, which can be captured onto the electrode via π-π stacking interactions between multibranched arms and reduced graphene oxide (rGO). Prior to the incubation process with an electrode, two blockers are designed to prohibit the nonspecific absorption of unreacted hairpin probes. Thus, an immobilization-free and label-free heterogeneous electrochemical assay for one-pot nucleic acid detection with zero background is readily realized. This strategy also presents additional merits of simplicity and cheap cost, since probe immobilization, signal tag labeling, and multiple incubation processes are avoided. Therefore, the as-proposed effective and versatile biosensor has great potential to be applied in nucleic acid-related practical biosensing.
DNA hydrogels are three-dimensional polymer networks constructed using DNA as the structural building block. Due to the tight binding between hydrophilic groups on DNA chains and water molecules, they exhibit outstanding plasticity and fluid thermodynamic properties, making them one of the best choices for mimicking natural biological tissues. By controlling the backbone building blocks, gelation conditions, and cross-linking methods of DNA hydrogels, hydrogels with different mechanical strengths can be obtained, thus expanding their applications in the field of biology. This review first introduces the relationship between the mechanical properties of DNA hydrogels and their structure, elucidates the approaches and strategies for mechanical property modulation, and focuses on the scheme of controllable design to modulate the mechanical properties of DNA hydrogels for applications in biosensing, cellular function regulation, and bone tissue engineering. Furthermore, this review outlines the future development directions and challenges faced in the mechanical property modulation of DNA hydrogels, providing useful information for the precise design of DNA hydrogels for biological research.