{"title":"GPU-accelerated polyenergetic forward projection for 9 MeV industrial CT system","authors":"","doi":"10.1784/insi.2023.65.12.689","DOIUrl":null,"url":null,"abstract":"Polyenergetic forward projection has great significance in inspecting hazardous materials, establishing optimal radiographic variables and investigating beam hardening effects. However, it is computationally intensive to perform polyenergetic forward-projection calculations for high-resolution\n phantoms. To address this issue, a rapid polyenergetic forward-projection algorithm is proposed for a 9 MeV industrial computed tomography (CT) system. The FLUktuierende KAskade (FLUKA) software package is used to generate the 9 MeV X-ray spectrum data. Two voxelised phantoms are used to model\n scanned objects, one being a multi-material cylinder and the other a single-material turbine blade. An incremental version of Siddon's algorithm is adopted to calculate the intersection lengths between the X-rays and the auxiliary phantoms. Three strategies are utilised to accelerate the calculation,\n in which: the intersection lengths do not vary with the energy bins and can be used repeatedly until all the energy bins are counted; a graphics processing unit (GPU) is used to accelerate the ray tracing algorithm by utilising a parallel computing technique; and faster memory access is achieved\n by binding the auxiliary phantoms to texture objects. The simulation results in this paper show that the GPU-based approach not only maintains the image precision but also gains significant speed-ups over the conventional central processing unit (CPU)-based Siddon method. Furthermore, beam\n hardening artefacts can clearly be seen from the profile curves of the reconstructed slices, indicating that this method is effective.","PeriodicalId":344397,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"18 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2023.65.12.689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Polyenergetic forward projection has great significance in inspecting hazardous materials, establishing optimal radiographic variables and investigating beam hardening effects. However, it is computationally intensive to perform polyenergetic forward-projection calculations for high-resolution
phantoms. To address this issue, a rapid polyenergetic forward-projection algorithm is proposed for a 9 MeV industrial computed tomography (CT) system. The FLUktuierende KAskade (FLUKA) software package is used to generate the 9 MeV X-ray spectrum data. Two voxelised phantoms are used to model
scanned objects, one being a multi-material cylinder and the other a single-material turbine blade. An incremental version of Siddon's algorithm is adopted to calculate the intersection lengths between the X-rays and the auxiliary phantoms. Three strategies are utilised to accelerate the calculation,
in which: the intersection lengths do not vary with the energy bins and can be used repeatedly until all the energy bins are counted; a graphics processing unit (GPU) is used to accelerate the ray tracing algorithm by utilising a parallel computing technique; and faster memory access is achieved
by binding the auxiliary phantoms to texture objects. The simulation results in this paper show that the GPU-based approach not only maintains the image precision but also gains significant speed-ups over the conventional central processing unit (CPU)-based Siddon method. Furthermore, beam
hardening artefacts can clearly be seen from the profile curves of the reconstructed slices, indicating that this method is effective.