Bimetallic niobium-iron oxynitride as a highly active catalyst towards the oxygen reduction reaction in acidic media

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Nano Pub Date : 2023-12-21 DOI:10.1016/j.mtnano.2023.100448
Junming Luo , Zhe Lu , Yating Zhang , Daoxiong Wu , Dai Dang , Neng Yu , Yueshan Xu , Suyang Feng , Shaolei Wang , Zhiyin Zhang , Yihan Zhao , Peilin Deng , Jing Li , Zhengpei Miao , Xinlong Tian
{"title":"Bimetallic niobium-iron oxynitride as a highly active catalyst towards the oxygen reduction reaction in acidic media","authors":"Junming Luo ,&nbsp;Zhe Lu ,&nbsp;Yating Zhang ,&nbsp;Daoxiong Wu ,&nbsp;Dai Dang ,&nbsp;Neng Yu ,&nbsp;Yueshan Xu ,&nbsp;Suyang Feng ,&nbsp;Shaolei Wang ,&nbsp;Zhiyin Zhang ,&nbsp;Yihan Zhao ,&nbsp;Peilin Deng ,&nbsp;Jing Li ,&nbsp;Zhengpei Miao ,&nbsp;Xinlong Tian","doi":"10.1016/j.mtnano.2023.100448","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>Developing cost-effective acidic oxygen reduction reaction (ORR) catalysts with high performance is of great significance for proton exchange membrane fuel cells (PEMFCs) but very challenging. Transition-metal </span>oxynitrides have high tolerance to harsh acidic media due to their excellent </span>corrosion resistance, but they suffer from low acidic ORR activity. Here we report the discovery of a carbon-supported bimetallic niobium-iron oxynitride as a highly active and robust ORR catalyst in acidic media. This catalyst shows much higher ORR activity than its monometallic </span>niobium oxynitride counterpart and exhibits a record high ORR activity among transition-metal oxynitrides, with an optimal ORR half-wave potential of 0.75 V vs. RHE, approaching those of atomically dispersed metal-</span><em>N</em><span>-C materials. It is revealed that the optimal catalyst has two types of Fe species with low oxidation state and two additional oxygen adsorption sites with high reactivity in comparison to its monometallic niobium oxynitride counterpart, therefore resulting in its remarkable ORR activity. Our work provides a new direction to explore efficient acidic ORR catalysts with low costs.</span></p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"25 ","pages":"Article 100448"},"PeriodicalIF":8.2000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842023001475","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing cost-effective acidic oxygen reduction reaction (ORR) catalysts with high performance is of great significance for proton exchange membrane fuel cells (PEMFCs) but very challenging. Transition-metal oxynitrides have high tolerance to harsh acidic media due to their excellent corrosion resistance, but they suffer from low acidic ORR activity. Here we report the discovery of a carbon-supported bimetallic niobium-iron oxynitride as a highly active and robust ORR catalyst in acidic media. This catalyst shows much higher ORR activity than its monometallic niobium oxynitride counterpart and exhibits a record high ORR activity among transition-metal oxynitrides, with an optimal ORR half-wave potential of 0.75 V vs. RHE, approaching those of atomically dispersed metal-N-C materials. It is revealed that the optimal catalyst has two types of Fe species with low oxidation state and two additional oxygen adsorption sites with high reactivity in comparison to its monometallic niobium oxynitride counterpart, therefore resulting in its remarkable ORR activity. Our work provides a new direction to explore efficient acidic ORR catalysts with low costs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双金属铌铁氮化物作为酸性介质中氧还原反应的高活性催化剂
开发具有成本效益的高性能酸性氧还原反应(ORR)催化剂对质子交换膜燃料电池(PEMFCs)意义重大,但也极具挑战性。过渡金属氧化物因其优异的耐腐蚀性而对苛刻的酸性介质具有很高的耐受性,但它们的酸性 ORR 活性却很低。我们在此报告发现了一种碳支撑双金属铌铁氧化物,它是一种在酸性介质中具有高活性和稳健性的 ORR 催化剂。这种催化剂的 ORR 活性远高于其单金属氧化铌,在过渡金属氧化物中显示出创纪录的高 ORR 活性,其最佳 ORR 半波电位为 0.75 V vs. RHE,接近原子分散金属-N-C 材料。研究表明,与单金属氧化铌相比,最佳催化剂具有两种低氧化态的铁物种和两个额外的高反应活性氧吸附位点,因此具有显著的 ORR 活性。我们的工作为探索低成本高效酸性 ORR 催化剂提供了一个新方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
期刊最新文献
Boosting non-volatile memory performance with exhalative annealing: A novel approach to low-temperature crystallization of hafnia based ferroelectric Top-down fabrication of Si nanotube arrays using nanoimprint lithography and spacer patterning for electronic and optoelectronic applications Nanoscale mapping of local intrinsic strain-induced anomalous bandgap variations in WSe2 using selective-wavelength scanning photoconductivity microscopy Neutrophil-inspired Zn and Zn@ZnO microparticles decorated with Cu nanoparticles self-release oxidized halogen antimicrobials In-depth conduction mechanism analysis of programmable memristor and its biosynaptic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1