Yang Song , Tongya Tian , Changming Li , Xi Zeng , Sen Zhang , Li Chen , Zhenghua Yang , Qizhe Ji , Xianglong Zhao , Feiyong Chen
{"title":"Controlled fabrication of Fe3N@NG composites as superior oxygen evolution reaction electrocatalysts","authors":"Yang Song , Tongya Tian , Changming Li , Xi Zeng , Sen Zhang , Li Chen , Zhenghua Yang , Qizhe Ji , Xianglong Zhao , Feiyong Chen","doi":"10.1016/j.crcon.2023.100207","DOIUrl":null,"url":null,"abstract":"<div><p>We report the controlled fabrication of nitrogen doped graphene (NG) nanoplates, which are uniformly decorated with iron nitride (Fe<sub>3</sub>N) nanoparticles, <em>via</em> ball milling of mixtures of graphite and iron nitrates and the following ammonia annealing. The obtained Fe<sub>3</sub>N@NG composites demonstrate excellent electrocatalytic activity and durability for oxygen evolution reaction, both of which outperform those of the state-of-the-art iridium oxide catalysts. This may be attributed to nitrogen doping as well as the synergistic effect between Fe<sub>3</sub>N and graphene nanoplates.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 2","pages":"Article 100207"},"PeriodicalIF":6.4000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000820/pdfft?md5=a7fd197eaf6cb04c425e7a8f82e6743d&pid=1-s2.0-S2588913323000820-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913323000820","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
We report the controlled fabrication of nitrogen doped graphene (NG) nanoplates, which are uniformly decorated with iron nitride (Fe3N) nanoparticles, via ball milling of mixtures of graphite and iron nitrates and the following ammonia annealing. The obtained Fe3N@NG composites demonstrate excellent electrocatalytic activity and durability for oxygen evolution reaction, both of which outperform those of the state-of-the-art iridium oxide catalysts. This may be attributed to nitrogen doping as well as the synergistic effect between Fe3N and graphene nanoplates.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.