Fluor-silane modified nano-calcium carbonate (CaCO3) as a hydrophobic coating for the conservation of sandstone via bio-inspired design

Ye Wang, Wenxin Xiao, Danqian Wang, Jingfeng Wang
{"title":"Fluor-silane modified nano-calcium carbonate (CaCO3) as a hydrophobic coating for the conservation of sandstone via bio-inspired design","authors":"Ye Wang,&nbsp;Wenxin Xiao,&nbsp;Danqian Wang,&nbsp;Jingfeng Wang","doi":"10.1016/j.bgtech.2023.100064","DOIUrl":null,"url":null,"abstract":"<div><p>Ancient cultural relics built of red sandstone have high historical value. However, due to the acceleration of the industrialization process of human civilization, increasingly frequent acid rain has caused irreversible damage to the surface of red sandstone artifacts. In this research, a fluor-silane modified nano-calcium carbonate (CaCO<sub>3</sub>) was prepared as a biomimetic hydrophobic coating for the conservation of red sandstone inspired by the lotus leaf effect. Characterizations and immersion tests were carried out to assess the protective properties of the coating. XRD, FT-IR, TEM and SEM were combined to characterize the morphology of the coating. In addition, the water contact angle was measured before and after immersion in the simulated acid rain. The results indicate that this kind of hydrophobic nano-CaCO<sub>3</sub> coating effectively protected the sandstone from the deleterious effects of acid rain.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 1","pages":"Article 100064"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949929123000645/pdfft?md5=359fffec740140cafcc0e2ce0ef1990f&pid=1-s2.0-S2949929123000645-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeotechnics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949929123000645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ancient cultural relics built of red sandstone have high historical value. However, due to the acceleration of the industrialization process of human civilization, increasingly frequent acid rain has caused irreversible damage to the surface of red sandstone artifacts. In this research, a fluor-silane modified nano-calcium carbonate (CaCO3) was prepared as a biomimetic hydrophobic coating for the conservation of red sandstone inspired by the lotus leaf effect. Characterizations and immersion tests were carried out to assess the protective properties of the coating. XRD, FT-IR, TEM and SEM were combined to characterize the morphology of the coating. In addition, the water contact angle was measured before and after immersion in the simulated acid rain. The results indicate that this kind of hydrophobic nano-CaCO3 coating effectively protected the sandstone from the deleterious effects of acid rain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过生物启发设计,将氟硅烷修饰的纳米碳酸钙(CaCO3)作为保护砂岩的疏水涂层
用红砂岩建造的古代文物具有很高的历史价值。然而,由于人类文明工业化进程的加快,日益频繁的酸雨对红砂岩文物表面造成了不可逆转的破坏。本研究受荷叶效应的启发,制备了一种氟硅烷修饰的纳米碳酸钙(CaCO3),作为保护红砂岩的仿生物疏水涂层。为了评估涂层的保护性能,对其进行了表征和浸泡试验。结合 XRD、FT-IR、TEM 和 SEM 对涂层的形态进行了表征。此外,还测量了在模拟酸雨中浸泡前后的水接触角。结果表明,这种疏水纳米 CaCO3 涂层能有效保护砂岩免受酸雨的有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Physical property of MICP-treated calcareous sand under seawater conditions by CPTU Miniaturized device to measure urease activity in the soil interstitial fluid using wenner method Development characteristics and quantitative analysis of cracks in root-soil complex during different growth periods under dry-wet cycles Improved methods, properties, applications and prospects of microbial induced carbonate precipitation (MICP) treated soil: A review Biogenic construction: The new era of civil engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1