High-speed metasurface modulator using perfectly absorptive bimodal plasmonic resonance

IF 5.4 1区 物理与天体物理 Q1 OPTICS APL Photonics Pub Date : 2023-12-01 DOI:10.1063/5.0173216
Jiaqi Zhang, Yuji Kosugi, Makoto Ogasawara, Koto Ariu, A. Otomo, Toshiki Yamada, Y. Nakano, Takuo Tanemura
{"title":"High-speed metasurface modulator using perfectly absorptive bimodal plasmonic resonance","authors":"Jiaqi Zhang, Yuji Kosugi, Makoto Ogasawara, Koto Ariu, A. Otomo, Toshiki Yamada, Y. Nakano, Takuo Tanemura","doi":"10.1063/5.0173216","DOIUrl":null,"url":null,"abstract":"Free-space electro-optic (EO) modulators operating at gigahertz and beyond are attractive for a wide range of emerging applications, including high-speed imaging, free-space optical communication, microwave photonics, and diffractive computing. Here, we experimentally demonstrate a high-speed plasmonic metasurface EO modulator operating in a near-infrared wavelength range with a gigahertz modulation bandwidth. To achieve efficient intensity modulation of reflected light from an ultrathin metasurface layer, we utilize the bimodal plasmonic resonance inside a subwavelength metal–insulator–metal grating, which is precisely tuned to satisfy the critical coupling condition. As a result, perfect absorption of −27 dB (99.8%) and a high quality (Q) factor of 113 are obtained at a resonant wavelength of 1650 nm. By incorporating an EO polymer inside the grating, we achieve a modulation depth of up to 9.5 dB under an applied voltage of ±30 V. The 3-dB modulation bandwidth is confirmed to be 1.25 GHz, which is primarily limited by the undesired contact resistance and the output impedance of the driver. Owing to the high electrical conductivity of metallic gratings and a compact device structure with a minimal parasitic capacitance, the demonstrated device can potentially operate at several tens of gigahertz, which opens up exciting opportunities for ultrahigh-speed active metasurface devices in various applications.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"20 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0173216","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Free-space electro-optic (EO) modulators operating at gigahertz and beyond are attractive for a wide range of emerging applications, including high-speed imaging, free-space optical communication, microwave photonics, and diffractive computing. Here, we experimentally demonstrate a high-speed plasmonic metasurface EO modulator operating in a near-infrared wavelength range with a gigahertz modulation bandwidth. To achieve efficient intensity modulation of reflected light from an ultrathin metasurface layer, we utilize the bimodal plasmonic resonance inside a subwavelength metal–insulator–metal grating, which is precisely tuned to satisfy the critical coupling condition. As a result, perfect absorption of −27 dB (99.8%) and a high quality (Q) factor of 113 are obtained at a resonant wavelength of 1650 nm. By incorporating an EO polymer inside the grating, we achieve a modulation depth of up to 9.5 dB under an applied voltage of ±30 V. The 3-dB modulation bandwidth is confirmed to be 1.25 GHz, which is primarily limited by the undesired contact resistance and the output impedance of the driver. Owing to the high electrical conductivity of metallic gratings and a compact device structure with a minimal parasitic capacitance, the demonstrated device can potentially operate at several tens of gigahertz, which opens up exciting opportunities for ultrahigh-speed active metasurface devices in various applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用完美吸收双模质子共振的高速元表面调制器
自由空间光电(EO)调制器的工作频率可达千兆赫兹或更高,对高速成像、自由空间光通信、微波光子学和衍射计算等各种新兴应用具有吸引力。在这里,我们通过实验展示了一种在近红外波长范围内工作、具有千兆赫调制带宽的高速等离子体元表面 EO 调制器。为了实现对超薄超表面层反射光的高效强度调制,我们利用了亚波长金属-绝缘体-金属光栅内的双模质子共振,并对其进行了精确调谐以满足临界耦合条件。因此,在共振波长为 1650 nm 时,可获得 -27 dB(99.8%)的完美吸收和 113 的高质量(Q)因子。通过在光栅内加入环氧乙烷聚合物,我们在±30 V 的外加电压下实现了高达 9.5 dB 的调制深度。经证实,3 dB 调制带宽为 1.25 GHz,这主要受到非预期接触电阻和驱动器输出阻抗的限制。由于金属光栅的高导电性和寄生电容极小的紧凑型器件结构,所演示的器件有可能在几十千兆赫的频率下工作,这为超高速有源元表面器件在各种应用中的发展提供了令人兴奋的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
期刊最新文献
Impact of polarization pulling on optimal spectrometer design for stimulated Brillouin scattering microscopy. Advancements in optical biosensing techniques: From fundamentals to future prospects The manipulation of spin angular momentum for binary circular Airy beam during propagation A tutorial on optical photothermal infrared (O-PTIR) microscopy Beyond memory-effect matrix-based imaging in scattering media by acousto-optic gating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1