{"title":"Elastic wave dispersion and polarization in a chiral elastic metamaterial","authors":"Xiaodong Wang","doi":"10.2140/jomms.2024.19.91","DOIUrl":null,"url":null,"abstract":"<p>The study of wave propagation in chiral elastic systems has important potential applications in areas such as controlling vibrations and wave filtering. Although the behaviour of elastic waves in traditional elastic media is well understood, how elastic waves behave in chiral materials is still to be further explored. We present an analytical study of elastic waves in a new continuous chiral elastic material, focusing on (i) the development of the new continuum model based on a class of discrete elastic metamaterials and (ii) the study of dispersion behaviour of elastic waves in this new chiral material. The effective material developed is isotropic and characterized by both elastic moduli and coupling parameters, associated with chirality. The dispersion relation and the corresponding waveforms are studied to evaluate the general behaviour of wave propagation in this new chiral medium. Different from the property of waves in traditional isotropic elastic media, generally no independent longitudinal or transverse waves can be observed in the new chiral medium except for cases at specific frequencies. The analytical findings are accompanied by illustrative numerical examples to show the general property of the dispersion and wave modes. </p>","PeriodicalId":50134,"journal":{"name":"Journal of Mechanics of Materials and Structures","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics of Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2140/jomms.2024.19.91","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The study of wave propagation in chiral elastic systems has important potential applications in areas such as controlling vibrations and wave filtering. Although the behaviour of elastic waves in traditional elastic media is well understood, how elastic waves behave in chiral materials is still to be further explored. We present an analytical study of elastic waves in a new continuous chiral elastic material, focusing on (i) the development of the new continuum model based on a class of discrete elastic metamaterials and (ii) the study of dispersion behaviour of elastic waves in this new chiral material. The effective material developed is isotropic and characterized by both elastic moduli and coupling parameters, associated with chirality. The dispersion relation and the corresponding waveforms are studied to evaluate the general behaviour of wave propagation in this new chiral medium. Different from the property of waves in traditional isotropic elastic media, generally no independent longitudinal or transverse waves can be observed in the new chiral medium except for cases at specific frequencies. The analytical findings are accompanied by illustrative numerical examples to show the general property of the dispersion and wave modes.
期刊介绍:
Drawing from all areas of engineering, materials, and biology, the mechanics of solids, materials, and structures is experiencing considerable growth in directions not anticipated a few years ago, which involve the development of new technology requiring multidisciplinary simulation. The journal stimulates this growth by emphasizing fundamental advances that are relevant in dealing with problems of all length scales. Of growing interest are the multiscale problems with an interaction between small and large scale phenomena.