{"title":"Dynamic response of an interlocking plastic-block wall with opening","authors":"Mehran Sudheer, Majid Ali","doi":"10.2140/jomms.2024.19.595","DOIUrl":null,"url":null,"abstract":"<p>The failure of unreinforced masonry structures (e.g., a collapse) because of their vulnerability to earthquake action poses an actual threat to human life. Researchers have investigated many mortar-free interlocking techniques. But the mass of interlocking blocks is a point of concern. The interlocking plastic-blocks are lighter in weight, possibly causing a lesser lateral force during the strong ground motions. However, the dynamic response of such structures is unknown. Therefore, the objective of this research is to examine the dynamic behavior of the scaled down model of the interlocking plastic-block wall having window in comparison with a model of an unreinforced masonry wall with the same elevation dimensions. Two dynamic tests, i.e., snapback and harmonic loading, are conducted in the out-of-plane direction. From the snapback test, the fundamental dynamic characteristics i.e., fundamental frequencies and damping ratios are experimentally determined. For learnt frequencies from snapback tests, three harmonic loadings are applied one by one using a locally developed unidirectional shake table. Acceleration time and displacement time histories are used to study the behavior of walls. Base shear displacement curves are used to determine energy absorption. Empirical equations are established by taking into consideration the input loading parameters, wall height, and geometry of interlocking blocks. It is found that the interlocking plastic-block wall is more resistant to unidirectional lateral loading when compared with a masonry wall. </p>","PeriodicalId":50134,"journal":{"name":"Journal of Mechanics of Materials and Structures","volume":"23 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics of Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2140/jomms.2024.19.595","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The failure of unreinforced masonry structures (e.g., a collapse) because of their vulnerability to earthquake action poses an actual threat to human life. Researchers have investigated many mortar-free interlocking techniques. But the mass of interlocking blocks is a point of concern. The interlocking plastic-blocks are lighter in weight, possibly causing a lesser lateral force during the strong ground motions. However, the dynamic response of such structures is unknown. Therefore, the objective of this research is to examine the dynamic behavior of the scaled down model of the interlocking plastic-block wall having window in comparison with a model of an unreinforced masonry wall with the same elevation dimensions. Two dynamic tests, i.e., snapback and harmonic loading, are conducted in the out-of-plane direction. From the snapback test, the fundamental dynamic characteristics i.e., fundamental frequencies and damping ratios are experimentally determined. For learnt frequencies from snapback tests, three harmonic loadings are applied one by one using a locally developed unidirectional shake table. Acceleration time and displacement time histories are used to study the behavior of walls. Base shear displacement curves are used to determine energy absorption. Empirical equations are established by taking into consideration the input loading parameters, wall height, and geometry of interlocking blocks. It is found that the interlocking plastic-block wall is more resistant to unidirectional lateral loading when compared with a masonry wall.
期刊介绍:
Drawing from all areas of engineering, materials, and biology, the mechanics of solids, materials, and structures is experiencing considerable growth in directions not anticipated a few years ago, which involve the development of new technology requiring multidisciplinary simulation. The journal stimulates this growth by emphasizing fundamental advances that are relevant in dealing with problems of all length scales. Of growing interest are the multiscale problems with an interaction between small and large scale phenomena.