ILIDViz: An Incremental Learning-Based Visual Analysis System for Network Anomaly Detection

Q1 Computer Science Virtual Reality Intelligent Hardware Pub Date : 2023-12-01 DOI:10.1016/j.vrih.2023.06.009
Xuefei Tian, Zhiyuan Wu, JunXiang Cao, Shengtao Chen, Xiaoju Dong
{"title":"ILIDViz: An Incremental Learning-Based Visual Analysis System for Network Anomaly Detection","authors":"Xuefei Tian,&nbsp;Zhiyuan Wu,&nbsp;JunXiang Cao,&nbsp;Shengtao Chen,&nbsp;Xiaoju Dong","doi":"10.1016/j.vrih.2023.06.009","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>With the development of information technology, network traffic logs mixed with various kinds of cyber-attacks have grown explosively. Traditional intrusion detection systems (IDS) have limited ability to discover new inconstant patterns and identify malicious traffic traces in real-time. It is urgent to implement more effective intrusion detection technologies to protect computer security.</p></div><div><h3>Methods</h3><p>In this paper, we design a hybrid IDS, combining our incremental learning model (KAN-SOINN) and active learning, to learn new log patterns and detect various network anomalies in real-time.</p></div><div><h3>Results &amp; Conclusions</h3><p>The experimental results on the NSLKDD dataset show that the KAN-SOINN can be improved continuously and detect malicious logs more effectively. Meanwhile, the comparative experiments prove that using a hybrid query strategy in active learning can improve the model learning efficiency.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"5 6","pages":"Pages 471-489"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096579623000372/pdf?md5=4b6332c477d34f662bbd8d1f6d5110ea&pid=1-s2.0-S2096579623000372-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579623000372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Background

With the development of information technology, network traffic logs mixed with various kinds of cyber-attacks have grown explosively. Traditional intrusion detection systems (IDS) have limited ability to discover new inconstant patterns and identify malicious traffic traces in real-time. It is urgent to implement more effective intrusion detection technologies to protect computer security.

Methods

In this paper, we design a hybrid IDS, combining our incremental learning model (KAN-SOINN) and active learning, to learn new log patterns and detect various network anomalies in real-time.

Results & Conclusions

The experimental results on the NSLKDD dataset show that the KAN-SOINN can be improved continuously and detect malicious logs more effectively. Meanwhile, the comparative experiments prove that using a hybrid query strategy in active learning can improve the model learning efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ILIDViz:基于增量学习的网络异常检测可视分析系统
背景随着信息技术的发展,混杂着各种网络攻击的网络流量日志呈爆炸式增长。传统的入侵检测系统(IDS)发现新的不稳定模式和实时识别恶意流量痕迹的能力有限。方法本文设计了一种混合 IDS,将增量学习模型(KAN-SOINN)和主动学习相结合,学习新的日志模式,实时检测各种网络异常情况。结果& 结论在 NSLKDD 数据集上的实验结果表明,KAN-SOINN 可以不断改进,更有效地检测恶意日志。同时,对比实验证明,在主动学习中使用混合查询策略可以提高模型学习效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
Framework for adaptive multimodal serious games for early intervention of autistic children Urgent needs, opportunities and challenges of virtual reality in healthcare and medicine in the era of large language models Effect of prior gaming experience on cybersickness symptoms in a virtual reality environment Efficient VR rendering: Survey on foveated, stereo, cloud, and low-power rendering techniques Vibrotactile pattern recognition:Influence of interstimulus intervals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1