首页 > 最新文献

Virtual Reality Intelligent Hardware最新文献

英文 中文
Pre-training transformer with dual-branch context content module for table detection in document images 采用双分支上下文内容模块的预训练变换器,用于文档图像中的表格检测
Q1 Computer Science Pub Date : 2024-10-01 DOI: 10.1016/j.vrih.2024.06.003
Yongzhi Li , Pengle Zhang , Meng Sun , Jin Huang , Ruhan He

Background

Document images such as statistical reports and scientific journals are widely used in information technology. Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction. However, because of the diversity in the shapes and sizes of tables, existing table detection methods adapted from general object detection algorithms, have not yet achieved satisfactory results. Incorrect detection results might lead to the loss of critical information.

Methods

Therefore, we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections. To better deal with table areas of different shapes and sizes, we added a dual-branch context content attention module (DCCAM) to high-dimensional features to extract context content information, thereby enhancing the network's ability to learn shape features. For feature fusion at different scales, we replaced the original 3×3 convolution with a multilayer residual module, which contains enhanced gradient flow information to improve the feature representation and extraction capability.

Results

We evaluated our method on public document datasets and compared it with previous methods, which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score. https://github.com/YongZ-Lee/TD-DCCAM
背景统计报告和科学期刊等文档图像被广泛应用于信息技术领域。准确检测文档图像中的表格区域是完成信息提取等任务的必要前提。然而,由于表格的形状和大小多种多样,从一般对象检测算法中改编而来的现有表格检测方法尚未取得令人满意的结果。因此,我们提出了一种新颖的端到端可训练深度网络,并结合自监督预训练转换器进行特征提取,以尽量减少错误检测。为了更好地处理不同形状和大小的桌面区域,我们在高维特征中添加了双分支上下文内容关注模块(DCCAM),以提取上下文内容信息,从而增强网络学习形状特征的能力。对于不同尺度的特征融合,我们用多层残差模块取代了原来的 3×3 卷积,该模块包含增强的梯度流信息,从而提高了特征表示和提取能力。结果我们在公共文档数据集上对我们的方法进行了评估,并将其与之前的方法进行了比较,后者在召回率和 F1 分数等评估指标方面取得了最先进的结果。https://github.com/YongZ-Lee/TD-DCCAM。
{"title":"Pre-training transformer with dual-branch context content module for table detection in document images","authors":"Yongzhi Li ,&nbsp;Pengle Zhang ,&nbsp;Meng Sun ,&nbsp;Jin Huang ,&nbsp;Ruhan He","doi":"10.1016/j.vrih.2024.06.003","DOIUrl":"10.1016/j.vrih.2024.06.003","url":null,"abstract":"<div><h3>Background</h3><div>Document images such as statistical reports and scientific journals are widely used in information technology. Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction. However, because of the diversity in the shapes and sizes of tables, existing table detection methods adapted from general object detection algorithms, have not yet achieved satisfactory results. Incorrect detection results might lead to the loss of critical information.</div></div><div><h3>Methods</h3><div>Therefore, we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections. To better deal with table areas of different shapes and sizes, we added a dual-branch context content attention module (DCCAM) to high-dimensional features to extract context content information, thereby enhancing the network's ability to learn shape features. For feature fusion at different scales, we replaced the original 3×3 convolution with a multilayer residual module, which contains enhanced gradient flow information to improve the feature representation and extraction capability.</div></div><div><h3>Results</h3><div>We evaluated our method on public document datasets and compared it with previous methods, which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score. <span><span>https://github.com/YongZ-Lee/TD-DCCAM</span><svg><path></path></svg></span></div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 5","pages":"Pages 408-420"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-salient object detection with iterative purification and predictive optimization 通过迭代净化和预测优化进行共轴物体检测
Q1 Computer Science Pub Date : 2024-10-01 DOI: 10.1016/j.vrih.2024.06.002
Yang Wen, Yuhuan Wang, Hao Wang, Wuzhen Shi, Wenming Cao

Background

Co-salient object detection (Co-SOD) aims to identify and segment commonly salient objects in a set of related images. However, most current Co-SOD methods encounter issues with the inclusion of irrelevant information in the co-representation. These issues hamper their ability to locate co-salient objects and significantly restrict the accuracy of detection.

Methods

To address this issue, this study introduces a novel Co-SOD method with iterative purification and predictive optimization (IPPO) comprising a common salient purification module (CSPM), predictive optimizing module (POM), and diminishing mixed enhancement block (DMEB).

Results

These components are designed to explore noise-free joint representations, assist the model in enhancing the quality of the final prediction results, and significantly improve the performance of the Co-SOD algorithm. Furthermore, through a comprehensive evaluation of IPPO and state-of-the-art algorithms focusing on the roles of CSPM, POM, and DMEB, our experiments confirmed that these components are pivotal in enhancing the performance of the model, substantiating the significant advancements of our method over existing benchmarks. Experiments on several challenging benchmark co-saliency datasets demonstrate that the proposed IPPO achieves state-of-the-art performance.
背景显著性物体检测(Co-SOD)旨在识别和分割一组相关图像中的共同显著性物体。然而,目前大多数共相关对象检测方法都会遇到在共呈现中包含无关信息的问题。方法为了解决这一问题,本研究引入了一种新型的共同突出物检测方法,该方法具有迭代净化和预测优化(IPPO)功能,包括共同突出物净化模块(CSPM)、预测优化模块(POM)和递减混合增强块(DMEB)。结果这些组件旨在探索无噪声联合表征,协助模型提高最终预测结果的质量,并显著提高 Co-SOD 算法的性能。此外,通过对 IPPO 和最先进算法的全面评估,重点关注 CSPM、POM 和 DMEB 的作用,我们的实验证实了这些组件在提高模型性能方面的关键作用,从而证实了我们的方法比现有基准有了显著的进步。在几个具有挑战性的基准共锯齿数据集上进行的实验证明,所提出的 IPPO 达到了最先进的性能。
{"title":"Co-salient object detection with iterative purification and predictive optimization","authors":"Yang Wen,&nbsp;Yuhuan Wang,&nbsp;Hao Wang,&nbsp;Wuzhen Shi,&nbsp;Wenming Cao","doi":"10.1016/j.vrih.2024.06.002","DOIUrl":"10.1016/j.vrih.2024.06.002","url":null,"abstract":"<div><h3>Background</h3><div>Co-salient object detection (Co-SOD) aims to identify and segment commonly salient objects in a set of related images. However, most current Co-SOD methods encounter issues with the inclusion of irrelevant information in the co-representation. These issues hamper their ability to locate co-salient objects and significantly restrict the accuracy of detection.</div></div><div><h3>Methods</h3><div>To address this issue, this study introduces a novel Co-SOD method with iterative purification and predictive optimization (IPPO) comprising a common salient purification module (CSPM), predictive optimizing module (POM), and diminishing mixed enhancement block (DMEB).</div></div><div><h3>Results</h3><div>These components are designed to explore noise-free joint representations, assist the model in enhancing the quality of the final prediction results, and significantly improve the performance of the Co-SOD algorithm. Furthermore, through a comprehensive evaluation of IPPO and state-of-the-art algorithms focusing on the roles of CSPM, POM, and DMEB, our experiments confirmed that these components are pivotal in enhancing the performance of the model, substantiating the significant advancements of our method over existing benchmarks. Experiments on several challenging benchmark co-saliency datasets demonstrate that the proposed IPPO achieves state-of-the-art performance.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 5","pages":"Pages 396-407"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Music-stylized hierarchical dance synthesis with user control 用户控制的音乐风格化分层舞蹈合成
Q1 Computer Science Pub Date : 2024-10-01 DOI: 10.1016/j.vrih.2024.06.004
Yanbo Cheng, Yichen Jiang, Yingying Wang

Background

Synthesizing dance motions to match musical inputs is a significant challenge in animation research. Compared to functional human motions, such as locomotion, dance motions are creative and artistic, often influenced by music, and can be independent body language expressions. Dance choreography requires motion content to follow a general dance genre, whereas dance performances under musical influence are infused with diverse impromptu motion styles. Considering the high expressiveness and variations in space and time, providing accessible and effective user control for tuning dance motion styles remains an open problem.

Methods

In this study, we present a hierarchical framework that decouples the dance synthesis task into independent modules. We use a high-level choreography module built as a Transformer-based sequence model to predict the long-term structure of a dance genre and a low-level realization module that implements dance stylization and synchronization to match the musical input or user preferences. This novel framework allows the individual modules to be trained separately. Because of the decoupling, dance composition can fully utilize existing high-quality dance datasets that do not have musical accompaniments, and the dance implementation can conveniently incorporate user controls and edit motions through a decoder network. Each module is replaceable at runtime, which adds flexibility to the synthesis of dance sequences.

Results

Synthesized results demonstrate that our framework generates high-quality diverse dance motions that are well adapted to varying musical conditions and user controls.
背景合成与音乐输入相匹配的舞蹈动作是动画研究中的一项重大挑战。与运动等人体功能性动作相比,舞蹈动作具有创造性和艺术性,经常受到音乐的影响,可以是独立的肢体语言表达。舞蹈编排要求动作内容遵循一般的舞蹈流派,而音乐影响下的舞蹈表演则注入了多样化的即兴动作风格。考虑到舞蹈在空间和时间上的高表现力和变化,为调整舞蹈动作风格提供方便有效的用户控制仍是一个有待解决的问题。方法在本研究中,我们提出了一个分层框架,将舞蹈合成任务分解为独立的模块。我们使用一个高级舞蹈编排模块,该模块由一个基于变换器的序列模型和一个低级实现模块组成,前者用于预测舞蹈流派的长期结构,后者用于实现舞蹈风格化和同步,以匹配音乐输入或用户偏好。这种新颖的框架允许对各个模块进行单独训练。由于解耦,舞蹈创作可以充分利用现有的没有音乐伴奏的高质量舞蹈数据集,舞蹈实现可以通过解码器网络方便地纳入用户控制和编辑动作。每个模块都可以在运行时更换,这增加了舞蹈序列合成的灵活性。结果合成结果表明,我们的框架能生成高质量的多样化舞蹈动作,并能很好地适应不同的音乐条件和用户控制。
{"title":"Music-stylized hierarchical dance synthesis with user control","authors":"Yanbo Cheng,&nbsp;Yichen Jiang,&nbsp;Yingying Wang","doi":"10.1016/j.vrih.2024.06.004","DOIUrl":"10.1016/j.vrih.2024.06.004","url":null,"abstract":"<div><h3>Background</h3><div>Synthesizing dance motions to match musical inputs is a significant challenge in animation research. Compared to functional human motions, such as locomotion, dance motions are creative and artistic, often influenced by music, and can be independent body language expressions. Dance choreography requires motion content to follow a general dance genre, whereas dance performances under musical influence are infused with diverse impromptu motion styles. Considering the high expressiveness and variations in space and time, providing accessible and effective user control for tuning dance motion styles remains an open problem.</div></div><div><h3>Methods</h3><div>In this study, we present a hierarchical framework that decouples the dance synthesis task into independent modules. We use a high-level choreography module built as a Transformer-based sequence model to predict the long-term structure of a dance genre and a low-level realization module that implements dance stylization and synchronization to match the musical input or user preferences. This novel framework allows the individual modules to be trained separately. Because of the decoupling, dance composition can fully utilize existing high-quality dance datasets that do not have musical accompaniments, and the dance implementation can conveniently incorporate user controls and edit motions through a decoder network. Each module is replaceable at runtime, which adds flexibility to the synthesis of dance sequences.</div></div><div><h3>Results</h3><div>Synthesized results demonstrate that our framework generates high-quality diverse dance motions that are well adapted to varying musical conditions and user controls.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 5","pages":"Pages 339-357"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesh representation matters: investigating the influence of different mesh features on perceptual and spatial fidelity of deep 3D morphable models 网格表示很重要:研究不同网格特征对深度三维可变形模型的感知和空间保真度的影响
Q1 Computer Science Pub Date : 2024-10-01 DOI: 10.1016/j.vrih.2024.08.006
Robert KOSK , Richard SOUTHERN , Lihua YOU , Shaojun BIAN , Willem KOKKE , Greg MAGUIRE

Background

Deep 3D morphable models (deep 3DMMs) play an essential role in computer vision. They are used in facial synthesis, compression, reconstruction and animation, avatar creation, virtual try-on, facial recognition systems and medical imaging. These applications require high spatial and perceptual quality of synthesised meshes. Despite their significance, these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.

Methods

We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes. This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L1 and L2 norm metrics and underperforms on perceptual metrics. In contrast, using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error. The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.

Results

The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.
背景深三维可变形模型(deep 3DMM)在计算机视觉中发挥着至关重要的作用。它们用于面部合成、压缩、重建和动画、头像创建、虚拟试穿、面部识别系统和医学成像。这些应用对合成网格的空间和感知质量要求很高。我们比较了不同网格表示特征对各种深度 3DMM 在重建网格的空间和感知保真度上的影响。本文证明了一个假设,即用全局表示法表示的网格构建深度 3DMM 会降低用 L1 和 L2 准则度量的空间重建误差,而在感知度量方面则表现不佳。与此相反,使用描述差异表面特性的差异网格表示法可获得较低的感知 FMPD 和 DAME,以及较高的空间保真度误差。本文介绍的结果为根据空间和感知质量目标选择网格表示法来构建深度 3DMM 提供了指导,并提出了网格表示法和深度 3DMM 的组合,从而提高了现有方法的感知或空间保真度。
{"title":"Mesh representation matters: investigating the influence of different mesh features on perceptual and spatial fidelity of deep 3D morphable models","authors":"Robert KOSK ,&nbsp;Richard SOUTHERN ,&nbsp;Lihua YOU ,&nbsp;Shaojun BIAN ,&nbsp;Willem KOKKE ,&nbsp;Greg MAGUIRE","doi":"10.1016/j.vrih.2024.08.006","DOIUrl":"10.1016/j.vrih.2024.08.006","url":null,"abstract":"<div><h3>Background</h3><div>Deep 3D morphable models (deep 3DMMs) play an essential role in computer vision. They are used in facial synthesis, compression, reconstruction and animation, avatar creation, virtual try-on, facial recognition systems and medical imaging. These applications require high spatial and perceptual quality of synthesised meshes. Despite their significance, these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.</div></div><div><h3>Methods</h3><div>We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes. This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with <span><math><mrow><msub><mi>L</mi><mn>1</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>L</mi><mn>2</mn></msub></mrow></math></span> norm metrics and underperforms on perceptual metrics. In contrast, using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error. The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.</div></div><div><h3>Results</h3><div>The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 5","pages":"Pages 383-395"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CURDIS: A template for incremental curve discretization algorithms and its application to conics CURDIS:增量曲线离散化算法模板及其在圆锥曲线中的应用
Q1 Computer Science Pub Date : 2024-10-01 DOI: 10.1016/j.vrih.2024.06.005
Philippe Latour, Marc Van Droogenbroeck
We introduce CURDIS, a template for algorithms to discretize arcs of regular curves by incrementally producing a list of support pixels covering the arc. In this template, algorithms proceed by finding the tangent quadrant at each point of the arc and determining which side the curve exits the pixel according to a tailored criterion. These two elements can be adapted for any type of curve, leading to algorithms dedicated to the shape of specific curves. While the calculation of the tangent quadrant for various curves, such as lines, conics, or cubics, is simple, it is more complex to analyze how pixels are traversed by the curve. In the case of conic arcs, we found a criterion for determining the pixel exit side. This leads us to present a new algorithm, called CURDIS-C, specific to the discretization of conics, for which we provide all the details. Surprisingly, the criterion for conics requires between one and three sign tests and four additions per pixel, making the algorithm efficient for resource-constrained systems and feasible for fixed-point or integer arithmetic implementations. Our algorithm also perfectly handles the pathological cases in which the conic intersects a pixel twice or changes quadrants multiple times within this pixel, achieving this generality at the cost of potentially computing up to two square roots per arc. We illustrate the use of CURDIS for the discretization of different curves, such as ellipses, hyperbolas, and parabolas, even when they degenerate into lines or corners.
我们介绍的 CURDIS 是一种用于对规则曲线的弧线进行离散化处理的算法模板,其方法是逐步生成覆盖弧线的支持像素列表。在该模板中,算法通过查找弧线每一点的切象限,并根据定制标准确定曲线从哪一侧流出像素。这两个要素可适用于任何类型的曲线,从而形成专门针对特定曲线形状的算法。虽然计算直线、圆锥曲线或立方体等各种曲线的切象限非常简单,但分析像素如何被曲线穿越则更为复杂。对于圆锥曲线,我们找到了确定像素出口边的标准。因此,我们提出了一种新算法,称为 CURDIS-C,专门用于圆锥曲线的离散化,并提供了所有细节。令人惊讶的是,圆锥曲线的标准只需要对每个像素进行一到三次符号检验和四次加法运算,这使得该算法在资源受限的系统中非常高效,在定点或整数运算实现中也是可行的。我们的算法还能完美处理圆锥与一个像素相交两次或在该像素内多次改变象限的病理情况,实现这种通用性的代价是每个弧可能要计算多达两个平方根。我们举例说明了 CURDIS 在椭圆、双曲线和抛物线等不同曲线离散化中的应用,即使它们退化为直线或角。
{"title":"CURDIS: A template for incremental curve discretization algorithms and its application to conics","authors":"Philippe Latour,&nbsp;Marc Van Droogenbroeck","doi":"10.1016/j.vrih.2024.06.005","DOIUrl":"10.1016/j.vrih.2024.06.005","url":null,"abstract":"<div><div>We introduce CURDIS, a template for algorithms to discretize arcs of regular curves by incrementally producing a list of support pixels covering the arc. In this template, algorithms proceed by finding the tangent quadrant at each point of the arc and determining which side the curve exits the pixel according to a tailored criterion. These two elements can be adapted for any type of curve, leading to algorithms dedicated to the shape of specific curves. While the calculation of the tangent quadrant for various curves, such as lines, conics, or cubics, is simple, it is more complex to analyze how pixels are traversed by the curve. In the case of conic arcs, we found a criterion for determining the pixel exit side. This leads us to present a new algorithm, called CURDIS-C, specific to the discretization of conics, for which we provide all the details. Surprisingly, the criterion for conics requires between one and three sign tests and four additions per pixel, making the algorithm efficient for resource-constrained systems and feasible for fixed-point or integer arithmetic implementations. Our algorithm also perfectly handles the pathological cases in which the conic intersects a pixel twice or changes quadrants multiple times within this pixel, achieving this generality at the cost of potentially computing up to two square roots per arc. We illustrate the use of CURDIS for the discretization of different curves, such as ellipses, hyperbolas, and parabolas, even when they degenerate into lines or corners.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 5","pages":"Pages 358-382"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MKEAH: Multimodal knowledge extraction and accumulation based on hyperplane embedding for knowledge-based visual question answering MKEAH: 基于超平面嵌入的多模态知识提取和积累,用于基于知识的视觉问题解答
Q1 Computer Science Pub Date : 2024-08-01 DOI: 10.1016/j.vrih.2023.06.002
Heng Zhang , Zhihua Wei , Guanming Liu , Rui Wang , Ruibin Mu , Chuanbao Liu , Aiquan Yuan , Guodong Cao , Ning Hu

Background

External knowledge representations play an essential role in knowledge-based visual question and answering to better understand complex scenarios in the open world. Recent entity-relationship embedding approaches are deficient in representing some complex relations, resulting in a lack of topic-related knowledge and redundancy in topic-irrelevant information.

Methods

To this end, we propose MKEAH: Multimodal Knowledge Extraction and Accumulation on Hyperplanes. To ensure that the lengths of the feature vectors projected onto the hyperplane compare equally and to filter out sufficient topic-irrelevant information, two losses are proposed to learn the triplet representations from the complementary views: range loss and orthogonal loss. To interpret the capability of extracting topic-related knowledge, we present the Topic Similarity (TS) between topic and entity-relations.

Results

Experimental results demonstrate the effectiveness of hyperplane embedding for knowledge representation in knowledge-based visual question answering. Our model outperformed state-of-the-art methods by 2.12% and 3.24% on two challenging knowledge-request datasets: OK-VQA and KRVQA, respectively.

Conclusions

The obvious advantages of our model in TS show that using hyperplane embedding to represent multimodal knowledge can improve its ability to extract topic-related knowledge.

背景外部知识表征在基于知识的可视化问答中发挥着至关重要的作用,可以更好地理解开放世界中的复杂场景。最近的实体关系嵌入方法在表示一些复杂关系方面存在缺陷,导致缺乏与主题相关的知识和与主题无关的冗余信息。为了确保投射到超平面上的特征向量长度相等,并过滤掉足够多的与主题无关的信息,我们提出了两种损失来学习互补视图的三元组表示:范围损失和正交损失。为了解释提取主题相关知识的能力,我们提出了主题和实体关系之间的主题相似度(TS)。 实验结果实验结果证明了超平面嵌入在基于知识的视觉问题解答中的知识表示的有效性。在两个具有挑战性的知识请求数据集上,我们的模型分别以 2.12% 和 3.24% 的优势超过了最先进的方法:结论我们的模型在 TS 中的明显优势表明,使用超平面嵌入来表示多模态知识可以提高提取主题相关知识的能力。
{"title":"MKEAH: Multimodal knowledge extraction and accumulation based on hyperplane embedding for knowledge-based visual question answering","authors":"Heng Zhang ,&nbsp;Zhihua Wei ,&nbsp;Guanming Liu ,&nbsp;Rui Wang ,&nbsp;Ruibin Mu ,&nbsp;Chuanbao Liu ,&nbsp;Aiquan Yuan ,&nbsp;Guodong Cao ,&nbsp;Ning Hu","doi":"10.1016/j.vrih.2023.06.002","DOIUrl":"10.1016/j.vrih.2023.06.002","url":null,"abstract":"<div><h3>Background</h3><p>External knowledge representations play an essential role in knowledge-based visual question and answering to better understand complex scenarios in the open world. Recent entity-relationship embedding approaches are deficient in representing some complex relations, resulting in a lack of topic-related knowledge and redundancy in topic-irrelevant information.</p></div><div><h3>Methods</h3><p>To this end, we propose MKEAH: Multimodal Knowledge Extraction and Accumulation on Hyperplanes. To ensure that the lengths of the feature vectors projected onto the hyperplane compare equally and to filter out sufficient topic-irrelevant information, two losses are proposed to learn the triplet representations from the complementary views: range loss and orthogonal loss. To interpret the capability of extracting topic-related knowledge, we present the Topic Similarity (TS) between topic and entity-relations.</p></div><div><h3>Results</h3><p>Experimental results demonstrate the effectiveness of hyperplane embedding for knowledge representation in knowledge-based visual question answering. Our model outperformed state-of-the-art methods by 2.12% and 3.24% on two challenging knowledge-request datasets: OK-VQA and KRVQA, respectively.</p></div><div><h3>Conclusions</h3><p>The obvious advantages of our model in TS show that using hyperplane embedding to represent multimodal knowledge can improve its ability to extract topic-related knowledge.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 4","pages":"Pages 280-291"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096579623000268/pdfft?md5=74ea90656cf281de7a0e35aa5b55705b&pid=1-s2.0-S2096579623000268-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142039957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-scale context-aware network for continuous sign language recognition 用于连续手语识别的多尺度情境感知网络
Q1 Computer Science Pub Date : 2024-08-01 DOI: 10.1016/j.vrih.2023.06.011
Senhua XUE, Liqing GAO, Liang WAN, Wei FENG

The hands and face are the most important parts for expressing sign language morphemes in sign language videos. However, we find that existing Continuous Sign Language Recognition (CSLR) methods lack the mining of hand and face information in visual backbones or use expensive and time-consuming external extractors to explore this information. In addition, the signs have different lengths, whereas previous CSLR methods typically use a fixed-length window to segment the video to capture sequential features and then perform global temporal modeling, which disturbs the perception of complete signs. In this study, we propose a Multi-Scale Context-Aware network (MSCA-Net) to solve the aforementioned problems. Our MSCA-Net contains two main modules: (1) Multi-Scale Motion Attention (MSMA), which uses the differences among frames to perceive information of the hands and face in multiple spatial scales, replacing the heavy feature extractors; and (2) Multi-Scale Temporal Modeling (MSTM), which explores crucial temporal information in the sign language video from different temporal scales. We conduct extensive experiments using three widely used sign language datasets, i.e., RWTH-PHOENIX-Weather-2014, RWTH-PHOENIX-Weather-2014T, and CSL-Daily. The proposed MSCA-Net achieve state-of-the-art performance, demonstrating the effectiveness of our approach.

手和脸是手语视频中表达手语语素的最重要部分。然而,我们发现现有的连续手语识别(CSLR)方法缺乏对视觉骨干中手和脸部信息的挖掘,或者使用昂贵耗时的外部提取器来挖掘这些信息。此外,手势的长度各不相同,而以往的 CSLR 方法通常使用固定长度的窗口分割视频以捕捉连续特征,然后进行全局时序建模,这干扰了对完整手势的感知。在本研究中,我们提出了一种多尺度上下文感知网络(MSCA-Net)来解决上述问题。我们的 MSCA-Net 包含两个主要模块:(1) 多尺度运动注意(MSMA),它利用帧间的差异来感知多个空间尺度上的手部和面部信息,取代了繁重的特征提取器;(2) 多尺度时间建模(MSTM),它从不同的时间尺度上探索手语视频中关键的时间信息。我们使用三个广泛使用的手语数据集(即 RWTH-PHOENIX-Weather-2014、RWTH-PHOENIX-Weather-2014T 和 CSL-Daily)进行了大量实验。所提出的 MSCA-Net 达到了最先进的性能,证明了我们方法的有效性。
{"title":"Multi-scale context-aware network for continuous sign language recognition","authors":"Senhua XUE,&nbsp;Liqing GAO,&nbsp;Liang WAN,&nbsp;Wei FENG","doi":"10.1016/j.vrih.2023.06.011","DOIUrl":"10.1016/j.vrih.2023.06.011","url":null,"abstract":"<div><p>The hands and face are the most important parts for expressing sign language morphemes in sign language videos. However, we find that existing Continuous Sign Language Recognition (CSLR) methods lack the mining of hand and face information in visual backbones or use expensive and time-consuming external extractors to explore this information. In addition, the signs have different lengths, whereas previous CSLR methods typically use a fixed-length window to segment the video to capture sequential features and then perform global temporal modeling, which disturbs the perception of complete signs. In this study, we propose a Multi-Scale Context-Aware network (MSCA-Net) to solve the aforementioned problems. Our MSCA-Net contains two main modules: <strong>(</strong>1) Multi-Scale Motion Attention (MSMA), which uses the differences among frames to perceive information of the hands and face in multiple spatial scales, replacing the heavy feature extractors; and <strong>(</strong>2) Multi-Scale Temporal Modeling (MSTM), which explores crucial temporal information in the sign language video from different temporal scales. We conduct extensive experiments using three widely used sign language datasets, i.e., RWTH-PHOENIX-Weather-2014, RWTH-PHOENIX-Weather-2014T, and CSL-Daily. The proposed MSCA-Net achieve state-of-the-art performance, demonstrating the effectiveness of our approach.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 4","pages":"Pages 323-337"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096579623000414/pdfft?md5=d9cac344d105f6ddc495c1cb1e50a67a&pid=1-s2.0-S2096579623000414-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142039960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust blind image watermarking based on interest points 基于兴趣点的鲁棒盲图像水印技术
Q1 Computer Science Pub Date : 2024-08-01 DOI: 10.1016/j.vrih.2023.06.012
Zizhuo WANG, Kun HU, Chaoyangfan HUANG, Zixuan HU, Shuo YANG, Xingjun WANG

Digital watermarking technology plays an essential role in the work of anti-counterfeiting and traceability. However, image watermarking algorithms are weak against hybrid attacks, especially geometric at-tacks, such as cropping attacks, rotation attacks, etc. We propose a robust blind image watermarking algorithm that combines stable interest points and deep learning networks to improve the robustness of the watermarking algorithm further. First, to extract more sparse and stable interest points, we use the Superpoint algorithm for generation and design two steps to perform the screening procedure. We first keep the points with the highest possibility in a given region to ensure the sparsity of the points and then filter the robust interest points by hybrid attacks to ensure high stability. The message is embedded in sub-blocks centered on stable interest points using a deep learning-based framework. Different kinds of attacks and simulated noise are added to the adversarial training to guarantee the robustness of embedded blocks. We use the ConvNext network for watermark extraction and determine the division threshold based on the decoded values of the unembedded sub-blocks. Through extensive experimental results, we demonstrate that our proposed algorithm can improve the accuracy of the network in extracting information while ensuring high invisibility between the embedded image and the original cover image. Comparison with previous SOTA work reveals that our algorithm can achieve better visual and numerical results on hybrid and geometric attacks.

数字水印技术在防伪和溯源工作中发挥着至关重要的作用。然而,图像水印算法对混合攻击的抵抗力较弱,尤其是几何攻击,如裁剪攻击、旋转攻击等。我们提出了一种结合稳定兴趣点和深度学习网络的鲁棒盲图像水印算法,以进一步提高水印算法的鲁棒性。首先,为了提取更多稀疏且稳定的兴趣点,我们使用超级点算法进行生成,并设计了两个步骤来执行筛选程序。我们首先保留给定区域内可能性最大的点,以确保点的稀疏性,然后通过混合攻击筛选出稳健的兴趣点,以确保高稳定性。利用基于深度学习的框架,将信息嵌入以稳定兴趣点为中心的子块中。在对抗训练中加入不同类型的攻击和模拟噪声,以保证嵌入块的鲁棒性。我们使用 ConvNext 网络提取水印,并根据未嵌入子块的解码值确定分割阈值。通过大量的实验结果,我们证明了我们提出的算法可以提高网络提取信息的准确性,同时确保嵌入图像与原始覆盖图像之间的高隐蔽性。与之前的 SOTA 工作相比,我们的算法可以在混合攻击和几何攻击中取得更好的视觉和数值结果。
{"title":"Robust blind image watermarking based on interest points","authors":"Zizhuo WANG,&nbsp;Kun HU,&nbsp;Chaoyangfan HUANG,&nbsp;Zixuan HU,&nbsp;Shuo YANG,&nbsp;Xingjun WANG","doi":"10.1016/j.vrih.2023.06.012","DOIUrl":"10.1016/j.vrih.2023.06.012","url":null,"abstract":"<div><p>Digital watermarking technology plays an essential role in the work of anti-counterfeiting and traceability. However, image watermarking algorithms are weak against hybrid attacks, especially geometric at-tacks, such as cropping attacks, rotation attacks, etc. We propose a robust blind image watermarking algorithm that combines stable interest points and deep learning networks to improve the robustness of the watermarking algorithm further. First, to extract more sparse and stable interest points, we use the Superpoint algorithm for generation and design two steps to perform the screening procedure. We first keep the points with the highest possibility in a given region to ensure the sparsity of the points and then filter the robust interest points by hybrid attacks to ensure high stability. The message is embedded in sub-blocks centered on stable interest points using a deep learning-based framework. Different kinds of attacks and simulated noise are added to the adversarial training to guarantee the robustness of embedded blocks. We use the ConvNext network for watermark extraction and determine the division threshold based on the decoded values of the unembedded sub-blocks. Through extensive experimental results, we demonstrate that our proposed algorithm can improve the accuracy of the network in extracting information while ensuring high invisibility between the embedded image and the original cover image. Comparison with previous SOTA work reveals that our algorithm can achieve better visual and numerical results on hybrid and geometric attacks.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 4","pages":"Pages 308-322"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096579623000426/pdfft?md5=0d46d851b07db92670b0c63431ec427e&pid=1-s2.0-S2096579623000426-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142039959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
S2ANet: Combining local spectral and spatial point grouping for point cloud processing S2ANet:结合局部光谱和空间点分组进行点云处理
Q1 Computer Science Pub Date : 2024-08-01 DOI: 10.1016/j.vrih.2023.06.005
Yujie LIU, Xiaorui SUN, Wenbin SHAO, Yafu YUAN

Background

Despite the recent progress in 3D point cloud processing using deep convolutional neural networks, the inability to extract local features remains a challenging problem. In addition, existing methods consider only the spatial domain in the feature extraction process.

Methods

In this paper, we propose a spectral and spatial aggregation convolutional network (S2ANet), which combines spectral and spatial features for point cloud processing. First, we calculate the local frequency of the point cloud in the spectral domain. Then, we use the local frequency to group points and provide a spectral aggregation convolution module to extract the features of the points grouped by the local frequency. We simultaneously extract the local features in the spatial domain to supplement the final features.

Results

S2ANet was applied in several point cloud analysis tasks; it achieved state-of-the-art classification accuracies of 93.8%, 88.0%, and 83.1% on the ModelNet40, ShapeNetCore, and ScanObjectNN datasets, respectively. For indoor scene segmentation, training and testing were performed on the S3DIS dataset, and the mean intersection over union was 62.4%.

Conclusions

The proposed S2ANet can effectively capture the local geometric information of point clouds, thereby improving accuracy on various tasks.

背景尽管最近在使用深度卷积神经网络进行三维点云处理方面取得了进展,但无法提取局部特征仍然是一个具有挑战性的问题。此外,现有方法在特征提取过程中只考虑了空间域。方法在本文中,我们提出了一种光谱和空间聚合卷积网络(S2ANet),它结合了光谱和空间特征,用于点云处理。首先,我们在光谱域计算点云的局部频率。然后,我们利用局部频率对点进行分组,并提供一个光谱聚合卷积模块来提取按局部频率分组的点的特征。我们同时提取了空间域的局部特征,以补充最终特征。结果S2ANet 被应用于多个点云分析任务中;它在 ModelNet40、ShapeNetCore 和 ScanObjectNN 数据集上的分类准确率分别达到了 93.8%、88.0% 和 83.1%,达到了最先进的水平。在室内场景分割方面,在 S3DIS 数据集上进行了训练和测试,平均交集超过联合的比例为 62.4%。
{"title":"S2ANet: Combining local spectral and spatial point grouping for point cloud processing","authors":"Yujie LIU,&nbsp;Xiaorui SUN,&nbsp;Wenbin SHAO,&nbsp;Yafu YUAN","doi":"10.1016/j.vrih.2023.06.005","DOIUrl":"10.1016/j.vrih.2023.06.005","url":null,"abstract":"<div><h3>Background</h3><p>Despite the recent progress in 3D point cloud processing using deep convolutional neural networks, the inability to extract local features remains a challenging problem. In addition, existing methods consider only the spatial domain in the feature extraction process.</p></div><div><h3>Methods</h3><p>In this paper, we propose a spectral and spatial aggregation convolutional network (S<sup>2</sup>ANet), which combines spectral and spatial features for point cloud processing. First, we calculate the local frequency of the point cloud in the spectral domain. Then, we use the local frequency to group points and provide a spectral aggregation convolution module to extract the features of the points grouped by the local frequency. We simultaneously extract the local features in the spatial domain to supplement the final features.</p></div><div><h3>Results</h3><p>S<sup>2</sup>ANet was applied in several point cloud analysis tasks; it achieved state-of-the-art classification accuracies of 93.8%, 88.0%, and 83.1% on the ModelNet40, ShapeNetCore, and ScanObjectNN datasets, respectively. For indoor scene segmentation, training and testing were performed on the S3DIS dataset, and the mean intersection over union was 62.4%.</p></div><div><h3>Conclusions</h3><p>The proposed S<sup>2</sup>ANet can effectively capture the local geometric information of point clouds, thereby improving accuracy on various tasks.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 4","pages":"Pages 267-279"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096579623000360/pdfft?md5=718a7d943dc6468abf44b38521bcc2cb&pid=1-s2.0-S2096579623000360-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142039956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating animatable 3D cartoon faces from single portraits 从单个肖像生成可动画化的 3D 卡通人脸
Q1 Computer Science Pub Date : 2024-08-01 DOI: 10.1016/j.vrih.2023.06.010
Chuanyu PAN , Guowei YANG , Taijiang MU , Yu-Kun LAI

Background

With the development of virtual reality (VR) technology, there is a growing need for customized 3D avatars. However, traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled. This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.

Methods

First, we transferred an input real-world portrait to a stylized cartoon image using StyleGAN. We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture. Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision. Finally, we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.

Conclusions

Compared with prior arts, the qualitative and quantitative results show that our method achieves better accuracy, aesthetics, and similarity criteria. Furthermore, we demonstrated the capability of the proposed 3D model for real-time facial animation.

背景随着虚拟现实(VR)技术的发展,人们对定制三维头像的需求越来越大。然而,传统的三维头像建模方法要么耗时,要么无法保持与被建模者的相似性。本研究提出了一种新颖的框架,用于从单个肖像图像生成可动画化的三维卡通人脸。方法首先,我们使用 StyleGAN 将输入的真实世界肖像转为风格化的卡通图像。然后,我们提出了一种两阶段重建方法,以恢复具有详细纹理的三维卡通人脸。我们的两阶段策略首先基于模板模型进行粗略估计,然后在地标监督下通过非刚性变形完善模型。最后,我们提出了一种基于人工创建模板和变形转移的语义保护人脸重建方法。结论与之前的技术相比,定性和定量结果表明我们的方法实现了更好的准确性、美观性和相似性标准。此外,我们还证明了所提出的三维模型在实时面部动画方面的能力。
{"title":"Generating animatable 3D cartoon faces from single portraits","authors":"Chuanyu PAN ,&nbsp;Guowei YANG ,&nbsp;Taijiang MU ,&nbsp;Yu-Kun LAI","doi":"10.1016/j.vrih.2023.06.010","DOIUrl":"10.1016/j.vrih.2023.06.010","url":null,"abstract":"<div><h3>Background</h3><p>With the development of virtual reality (VR) technology, there is a growing need for customized 3D avatars. However, traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled. This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.</p></div><div><h3>Methods</h3><p>First, we transferred an input real-world portrait to a stylized cartoon image using StyleGAN. We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture. Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision. Finally, we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.</p></div><div><h3>Conclusions</h3><p>Compared with prior arts, the qualitative and quantitative results show that our method achieves better accuracy, aesthetics, and similarity criteria. Furthermore, we demonstrated the capability of the proposed 3D model for real-time facial animation.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 4","pages":"Pages 292-307"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096579623000359/pdfft?md5=e0641053e4314662ffe5dca1c167d86b&pid=1-s2.0-S2096579623000359-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142039958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Virtual Reality Intelligent Hardware
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1