Effects of thermal and chemical modification on the physical properties of Ugandan Mutaka Kaolin

Andrew Kasumba Buyondo , Hillary Kasedde , John Baptist Kirabira , Ocident Bongomin
{"title":"Effects of thermal and chemical modification on the physical properties of Ugandan Mutaka Kaolin","authors":"Andrew Kasumba Buyondo ,&nbsp;Hillary Kasedde ,&nbsp;John Baptist Kirabira ,&nbsp;Ocident Bongomin","doi":"10.1016/j.efmat.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of thermal treatment at temperatures ranging from 600 ​°C to 1050 ​°C and chemical treatment using (COOH)<sub>2</sub>·2H<sub>2</sub>O and Al<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> ​at concentrations of 0.01 ​M, 0.05 ​M, and 0.1 ​M. The modified kaolin samples’ pH, oil adsorption capacity, refractive index, specific gravity, and viscosity were examined. Comprehensive analyses were performed to characterize the modified kaolin samples. The spectrum results revealed dealumination, with a corresponding increase in silicon content due to chemical treatment, while the aluminum content decreased compared to thermal treatment results. As observed with the calcined kaolin sample, a significant portion of the OH stretch groups vanished with disappearance stretches along the bands at 1229.6 and 1009.2 ​cm<sup>−1</sup>, corresponding to Si–O stretching vibrations. The specific gravity of calcined kaolin was observed to be relatively lower than TiO<sub>2</sub>. Furthermore, the obtained pH of 4.0 or lower, or a pH of 9.0 or higher, is classified as corrosive. The ideal temperature range for achieving optimal oil absorption lies within the 800 ​°C–900 ​°C range, where metakaolin properties favor effective oil uptake. The chemical concentration had a notable impact on the dispersion of kaolin powders, in contrast to calcined kaolin. At 800 ​°C, calcined kaolin attained an almost ideal refractive index for water-based paints, closely aligning with the refractive index of water.</div></div>","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"2 2","pages":"Pages 159-166"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Functional Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773058123000327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of thermal treatment at temperatures ranging from 600 ​°C to 1050 ​°C and chemical treatment using (COOH)2·2H2O and Al2(MoO4)3 ​at concentrations of 0.01 ​M, 0.05 ​M, and 0.1 ​M. The modified kaolin samples’ pH, oil adsorption capacity, refractive index, specific gravity, and viscosity were examined. Comprehensive analyses were performed to characterize the modified kaolin samples. The spectrum results revealed dealumination, with a corresponding increase in silicon content due to chemical treatment, while the aluminum content decreased compared to thermal treatment results. As observed with the calcined kaolin sample, a significant portion of the OH stretch groups vanished with disappearance stretches along the bands at 1229.6 and 1009.2 ​cm−1, corresponding to Si–O stretching vibrations. The specific gravity of calcined kaolin was observed to be relatively lower than TiO2. Furthermore, the obtained pH of 4.0 or lower, or a pH of 9.0 or higher, is classified as corrosive. The ideal temperature range for achieving optimal oil absorption lies within the 800 ​°C–900 ​°C range, where metakaolin properties favor effective oil uptake. The chemical concentration had a notable impact on the dispersion of kaolin powders, in contrast to calcined kaolin. At 800 ​°C, calcined kaolin attained an almost ideal refractive index for water-based paints, closely aligning with the refractive index of water.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热改性和化学改性对乌干达穆塔卡高岭土物理性质的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Advance of self-cleaning separation membranes for oil-containing wastewater treatment Modified Titanium dioxide-based photocatalysts for water treatment: Mini review Progress of CO2 fixation using cycloaddition reaction The application of diatomic catalysts in advanced oxidation Fenton-like water treatment technology:A mini review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1