Su In Lee , Haneul Kim , Chang Ki Lim , Jae Dong Kim , Jeong Seok Heo , Joongoo Jung , Chan Kim , Hong Jae Chon , Jae-Won Jeon
{"title":"Engagement of CD300c by a novel monoclonal antibody induces the differentiation of monocytes to M1 macrophages","authors":"Su In Lee , Haneul Kim , Chang Ki Lim , Jae Dong Kim , Jeong Seok Heo , Joongoo Jung , Chan Kim , Hong Jae Chon , Jae-Won Jeon","doi":"10.1016/j.imbio.2023.152780","DOIUrl":null,"url":null,"abstract":"<div><p>Human CD300c is expressed on various immune or cancer cells and is a novel B7 family member, functioning as an activity modulator on immune cells. To elucidate the function of CD300c, we developed CL7, a human CD300c-specific monoclonal antibody, and assessed its biological activity. The specific binding of CL7 monoclonal antibody against recombinant CD300c antigen was confirmed using enzyme-linked immunosorbent assay and surface plasmon resonance analysis. The binding affinity of CL7 was strong at the sub-nanomolar level. Furthermore, CL7 effectively bound to exogenously expressed CD300c on 293T cells. CL7 antibody differentiated monocytes to M1 macrophages, as evidenced by the upregulated expression of M1-specific cell surface markers and increased secretion of M1-specific cytokines in vitro in THP-1 cells and primary macrophages, as well as the increased population size of M1 macrophages in tumors grafted into mice. Additionally, CL7 treatment upregulated PD-L1 expression on THP-1 cells. We confirmed that the mechanism of M1 macrophage differentiation was through the mitogen-activated protein kinase and NF-κB signaling pathways. CD300c expression on various immune and cancer cells was similar to that of the well-known immune checkpoint PD-L1, suggesting the possibility of CD300c as a novel tumor biomarker. We also confirmed that the tumor size was substantially reduced by CL7 antibody treatment in the CT26 mouse model. Our study supports that CD300c is a potential therapeutic target in immuno-oncology. Overall, the CD300c-specific monoclonal antibody, CL7, is a promising immunotherapeutic agent, and it induces enhanced differentiation of M1 macrophages and/or their infiltration into the tumor microenvironment.</p></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"229 1","pages":"Article 152780"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171298523045825/pdfft?md5=375758e9582e44f7c9f0f15ee884fde0&pid=1-s2.0-S0171298523045825-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171298523045825","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human CD300c is expressed on various immune or cancer cells and is a novel B7 family member, functioning as an activity modulator on immune cells. To elucidate the function of CD300c, we developed CL7, a human CD300c-specific monoclonal antibody, and assessed its biological activity. The specific binding of CL7 monoclonal antibody against recombinant CD300c antigen was confirmed using enzyme-linked immunosorbent assay and surface plasmon resonance analysis. The binding affinity of CL7 was strong at the sub-nanomolar level. Furthermore, CL7 effectively bound to exogenously expressed CD300c on 293T cells. CL7 antibody differentiated monocytes to M1 macrophages, as evidenced by the upregulated expression of M1-specific cell surface markers and increased secretion of M1-specific cytokines in vitro in THP-1 cells and primary macrophages, as well as the increased population size of M1 macrophages in tumors grafted into mice. Additionally, CL7 treatment upregulated PD-L1 expression on THP-1 cells. We confirmed that the mechanism of M1 macrophage differentiation was through the mitogen-activated protein kinase and NF-κB signaling pathways. CD300c expression on various immune and cancer cells was similar to that of the well-known immune checkpoint PD-L1, suggesting the possibility of CD300c as a novel tumor biomarker. We also confirmed that the tumor size was substantially reduced by CL7 antibody treatment in the CT26 mouse model. Our study supports that CD300c is a potential therapeutic target in immuno-oncology. Overall, the CD300c-specific monoclonal antibody, CL7, is a promising immunotherapeutic agent, and it induces enhanced differentiation of M1 macrophages and/or their infiltration into the tumor microenvironment.
期刊介绍:
Immunobiology is a peer-reviewed journal that publishes highly innovative research approaches for a wide range of immunological subjects, including
• Innate Immunity,
• Adaptive Immunity,
• Complement Biology,
• Macrophage and Dendritic Cell Biology,
• Parasite Immunology,
• Tumour Immunology,
• Clinical Immunology,
• Immunogenetics,
• Immunotherapy and
• Immunopathology of infectious, allergic and autoimmune disease.