{"title":"Modern technologies and solutions to enhance surveillance and response systems for emerging zoonotic diseases","authors":"Li Zhang, Wenqiang Guo, Chenrui Lv","doi":"10.1016/j.soh.2023.100061","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Zoonotic diseases originating in animals pose a significant threat to global public health. Recent outbreaks, such as coronavirus disease 2019 (COVID-19), have caused widespread illness, death, and socioeconomic disruptions worldwide. To cope with these diseases effectively, it is crucial to strengthen surveillance capabilities and establish rapid response systems.</p></div><div><h3>Aim</h3><p>The aim of this review to examine the modern technologies and solutions that have the potential to enhance zoonotic disease surveillance and outbreak responses and provide valuable insights into how cutting-edge innovations could be leveraged to prevent, detect, and control emerging zoonotic disease outbreaks. Herein, we discuss advanced tools including big data analytics, artificial intelligence, the Internet of Things, geographic information systems, remote sensing, molecular diagnostics, point-of-care testing, telemedicine, digital contact tracing, and early warning systems.</p></div><div><h3>Results</h3><p>These technologies enable real-time monitoring, the prediction of outbreak risks, early anomaly detection, rapid diagnosis, and targeted interventions during outbreaks. When integrated through collaborative partnerships, these strategies can significantly improve the speed and effectiveness of zoonotic disease control. However, several challenges persist, particularly in resource-limited settings, such as infrastructure limitations, costs, data integration and training requirements, and ethical implementation.</p></div><div><h3>Conclusion</h3><p>With strategic planning and coordinated efforts, modern technologies and solutions offer immense potential to bolster surveillance and outbreak responses, and serve as a critical resource against emerging zoonotic disease threats worldwide.</p></div>","PeriodicalId":101146,"journal":{"name":"Science in One Health","volume":"3 ","pages":"Article 100061"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949704323000550/pdfft?md5=082e39eacd6558811257deeac1b0a67d&pid=1-s2.0-S2949704323000550-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in One Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949704323000550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Zoonotic diseases originating in animals pose a significant threat to global public health. Recent outbreaks, such as coronavirus disease 2019 (COVID-19), have caused widespread illness, death, and socioeconomic disruptions worldwide. To cope with these diseases effectively, it is crucial to strengthen surveillance capabilities and establish rapid response systems.
Aim
The aim of this review to examine the modern technologies and solutions that have the potential to enhance zoonotic disease surveillance and outbreak responses and provide valuable insights into how cutting-edge innovations could be leveraged to prevent, detect, and control emerging zoonotic disease outbreaks. Herein, we discuss advanced tools including big data analytics, artificial intelligence, the Internet of Things, geographic information systems, remote sensing, molecular diagnostics, point-of-care testing, telemedicine, digital contact tracing, and early warning systems.
Results
These technologies enable real-time monitoring, the prediction of outbreak risks, early anomaly detection, rapid diagnosis, and targeted interventions during outbreaks. When integrated through collaborative partnerships, these strategies can significantly improve the speed and effectiveness of zoonotic disease control. However, several challenges persist, particularly in resource-limited settings, such as infrastructure limitations, costs, data integration and training requirements, and ethical implementation.
Conclusion
With strategic planning and coordinated efforts, modern technologies and solutions offer immense potential to bolster surveillance and outbreak responses, and serve as a critical resource against emerging zoonotic disease threats worldwide.