Thermal design and optimization of high-temperature heat pump integrated with district heating benchmarked in Denmark for process heat supply: “Optimisation d'une pompe à chaleur haute température en cascade intégrée au chauffage urbain, référencée au Danemark pour l'approvisionnement en chaleur industrielle: conception thermique et sélection du fluide de travail”

Mohsen Sadeghi, Tage Petersen, Zhenyu Yang, Benjamin Zühlsdorf, Kim Stenholdt Madsen
{"title":"Thermal design and optimization of high-temperature heat pump integrated with district heating benchmarked in Denmark for process heat supply: “Optimisation d'une pompe à chaleur haute température en cascade intégrée au chauffage urbain, référencée au Danemark pour l'approvisionnement en chaleur industrielle: conception thermique et sélection du fluide de travail”","authors":"Mohsen Sadeghi, Tage Petersen, Zhenyu Yang, Benjamin Zühlsdorf, Kim Stenholdt Madsen","doi":"10.1016/j.ijrefrig.2023.12.025","DOIUrl":null,"url":null,"abstract":"<p>This work aims to assess and optimize the performance of cascade high-temperature heat pump (HTHP) integrated with district heating (DH) to produce 1 MW steam at 160°C for the industrial processes. The heat available in the primary loop of the DH network at 80 °C is considered as the heat source; which is cooled down 70 °C through the HTHP evaporator, before supplying the DH secondary loop. The use of alternative hydrocarbons in the low-temperature loop are examined; and considering the gas compressor limitation, the HTHP performance of using each refrigerant is optimized and compared to each other.</p><p>The optimization results reveal that pentane- hydrocarbon with the highest critical temperature- is the most promising refrigerant to be paired with steam in the high-temperature loop, reaching the highest COP of 2.66. However, concerning safety and compressor sizing issues, butane is an excellent candidate; with volumetric heating capacity (VHC) of about two times more than that of pentane, in the expense of just about 4 % reduction in the HTHP COP. In addition, water injection theoretically controls the steam compressor discharge temperature successfully, with just 0.9 K superheating at the compressor outlet; and reduces its power consumption and the HTHP COP up to 4.3 % and 1.7 %, respectively. Moreover, techno-economic analysis demonstrates that the HTHP technology shows a better business case compared to the conventional natural gas and electric boilers.</p>","PeriodicalId":14367,"journal":{"name":"International Journal of Refrigeration","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ijrefrig.2023.12.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to assess and optimize the performance of cascade high-temperature heat pump (HTHP) integrated with district heating (DH) to produce 1 MW steam at 160°C for the industrial processes. The heat available in the primary loop of the DH network at 80 °C is considered as the heat source; which is cooled down 70 °C through the HTHP evaporator, before supplying the DH secondary loop. The use of alternative hydrocarbons in the low-temperature loop are examined; and considering the gas compressor limitation, the HTHP performance of using each refrigerant is optimized and compared to each other.

The optimization results reveal that pentane- hydrocarbon with the highest critical temperature- is the most promising refrigerant to be paired with steam in the high-temperature loop, reaching the highest COP of 2.66. However, concerning safety and compressor sizing issues, butane is an excellent candidate; with volumetric heating capacity (VHC) of about two times more than that of pentane, in the expense of just about 4 % reduction in the HTHP COP. In addition, water injection theoretically controls the steam compressor discharge temperature successfully, with just 0.9 K superheating at the compressor outlet; and reduces its power consumption and the HTHP COP up to 4.3 % and 1.7 %, respectively. Moreover, techno-economic analysis demonstrates that the HTHP technology shows a better business case compared to the conventional natural gas and electric boilers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温热泵的热设计和优化与丹麦的区域供热相结合,用于工艺供热:"Optimisation d'une pompe à chaleur haute température en cascade intégrée au chauffage urbain, référencée au Danemark pour l'approvisionnement en chaleur industrielle: conception thermique et sélection du fluide de travail"。
这项工作旨在评估和优化与区域供热(DH)集成的级联高温热泵(HTHP)的性能,以便为工业流程生产 160°C 的 1 兆瓦蒸汽。区域供热(DH)网络一次环路中 80 ℃ 的热量被视为热源,通过 HTHP 蒸发器冷却 70 ℃ 后供应给区域供热(DH)二次环路。优化结果表明,临界温度最高的碳氢化合物戊烷是高温环路中最有希望与蒸汽配对使用的制冷剂,其 COP 最高,达到 2.66。然而,在安全和压缩机选型问题上,丁烷是一个很好的候选者;其容积加热能力(VHC)约为戊烷的两倍,而高温环路的 COP 仅降低了约 4%。此外,从理论上讲,注水可成功控制蒸汽压缩机的排气温度,在压缩机出口处仅有 0.9 K 的过热;并可将其功耗和 HTHP COP 分别降低 4.3 % 和 1.7 %。此外,技术经济分析表明,与传统的天然气锅炉和电锅炉相比,HTHP 技术具有更好的商业价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tribological and residential air conditioning performance using SiO2-TiO2/PVE nanolubricant Experimental investigation on boiling heat transfer characteristics of R1234yf/R1336mzz(Z) in horizontal flow Two-phase flow condensation heat transfer characteristics of R-134a inside three-dimensional cylindrical micropillar enhanced tube A 2 kW-class free-piston Stirling heat pump prototype suitable for cold regions for domestic heating Thermal design and optimization of high-temperature heat pump integrated with district heating benchmarked in Denmark for process heat supply: “Optimisation d'une pompe à chaleur haute température en cascade intégrée au chauffage urbain, référencée au Danemark pour l'approvisionnement en chaleur industrielle: conception thermique et sélection du fluide de travail”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1