Polyethylene-derived high-yield carbon material for upcycling plastic wastes as a high-performance composite filler

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Composites Part C Open Access Pub Date : 2023-12-23 DOI:10.1016/j.jcomc.2023.100429
Gwanwon Lee , Han Gyeol Jang , Se Youn Cho , Han-Ik Joh , Doh C. Lee , Jaewoo Kim , Sungho Lee
{"title":"Polyethylene-derived high-yield carbon material for upcycling plastic wastes as a high-performance composite filler","authors":"Gwanwon Lee ,&nbsp;Han Gyeol Jang ,&nbsp;Se Youn Cho ,&nbsp;Han-Ik Joh ,&nbsp;Doh C. Lee ,&nbsp;Jaewoo Kim ,&nbsp;Sungho Lee","doi":"10.1016/j.jcomc.2023.100429","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, to address environmental challenges stemming from plastic wastes, we produced carbon material derived from polyethylene (PE-C) using thermal oxidation and carbonization processes. Prior to thermal oxidation, e-beam irradiation was employed to enhance oxidation reactions which facilitated transformation of linear chains to cyclic ladder structures, resulting in a threefold increase in carbonization yield compared to conventional methods. Our analysis using XRD, Raman spectroscopy, XPS, and SEM revealed that PE-C exhibited a crystal structure similar to commercial CB (C-CB). However, it featured three times more oxygen functional groups on its surface and consisted of individual particles without forming aggregates or agglomerates. We incorporated PE-C into a PA6 polymer matrix to create composite materials with various compositions, systematically comparing their electrical, thermal, and mechanical properties to C-CB/PA6. PE-C outperformed C-CB in terms of mechanical properties (65 MPa vs<em>.</em> 41 MPa) due to its surface oxygen functional groups, uniform dispersion even at high loadings, and a rough surface. Moreover, PE-C exhibited a lower surface area, which reduced interfacial thermal resistance and consequently enhanced thermal conductivity, resulting in a 16 % improvement compared to C-CB at 30 wt%.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682023000853/pdfft?md5=7565332e5a366545ec675d99fc6f255a&pid=1-s2.0-S2666682023000853-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682023000853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, to address environmental challenges stemming from plastic wastes, we produced carbon material derived from polyethylene (PE-C) using thermal oxidation and carbonization processes. Prior to thermal oxidation, e-beam irradiation was employed to enhance oxidation reactions which facilitated transformation of linear chains to cyclic ladder structures, resulting in a threefold increase in carbonization yield compared to conventional methods. Our analysis using XRD, Raman spectroscopy, XPS, and SEM revealed that PE-C exhibited a crystal structure similar to commercial CB (C-CB). However, it featured three times more oxygen functional groups on its surface and consisted of individual particles without forming aggregates or agglomerates. We incorporated PE-C into a PA6 polymer matrix to create composite materials with various compositions, systematically comparing their electrical, thermal, and mechanical properties to C-CB/PA6. PE-C outperformed C-CB in terms of mechanical properties (65 MPa vs. 41 MPa) due to its surface oxygen functional groups, uniform dispersion even at high loadings, and a rough surface. Moreover, PE-C exhibited a lower surface area, which reduced interfacial thermal resistance and consequently enhanced thermal conductivity, resulting in a 16 % improvement compared to C-CB at 30 wt%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从聚乙烯中提取的高产碳材料,可作为高性能复合材料填料循环利用塑料废弃物
在本研究中,为了应对塑料废弃物带来的环境挑战,我们利用热氧化和碳化工艺生产了从聚乙烯(PE-C)中提取的碳材料。在热氧化之前,我们采用电子束辐照来增强氧化反应,从而促进线性链向环状梯形结构的转化,使碳化产率比传统方法提高了三倍。我们利用 XRD、拉曼光谱、XPS 和 SEM 进行的分析表明,PE-C 的晶体结构与商用 CB(C-CB)相似。不过,它表面的氧官能团要多三倍,而且由单个颗粒组成,不会形成聚集体或团块。我们将 PE-C 加入 PA6 聚合物基体中,制成了各种成分的复合材料,并将其电气、热和机械性能与 C-CB/PA6 进行了系统比较。PE-C 的机械性能(65 兆帕对 41 兆帕)优于 C-CB,这得益于其表面氧官能团、即使在高负载时也能均匀分散以及粗糙的表面。此外,PE-C 的表面积较小,这降低了界面热阻,从而提高了热导率,与 30 wt% 的 C-CB 相比,热导率提高了 16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
期刊最新文献
Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane Cure-induced residual stresses and viscoelastic effects in repaired wind turbine blades: Analytical-numerical investigation Bioinspired surface modification of mussel shells and their application as a biogenic filler in polypropylene composites A review of repairing heat-damaged RC beams using externally bonded- and near-surface mounted-CFRP composites Comparative analysis of delamination resistance in CFRP laminates interleaved by thermoplastic nanoparticle: Evaluating toughening mechanisms in modes I and II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1