AI-Based Beam Management in 3GPP: Optimizing Data Collection Time Window for Temporal Beam Prediction

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2023-11-29 DOI:10.1109/OJVT.2023.3337357
Yingshuang Bai;Jiawei Zhang;Chen Sun;Le Zhao;Haojin Li;Xiaoxue Wang
{"title":"AI-Based Beam Management in 3GPP: Optimizing Data Collection Time Window for Temporal Beam Prediction","authors":"Yingshuang Bai;Jiawei Zhang;Chen Sun;Le Zhao;Haojin Li;Xiaoxue Wang","doi":"10.1109/OJVT.2023.3337357","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) has gained significant attention and extensive research across various fields in recent years. In the realm of wireless communication, researchers are exploring the use of AI to facilitate various physical layer (PHY) procedures. Within the standardization efforts of the Third Generation Partnership Project (3GPP), one prominent direction being explored is AI-based beam management (BM). The primary objective is to harness AI techniques for predicting optimal beams, thereby reducing measurement overhead and latency. This paper aims to discuss the progress made in AI-based beam management within the Release 18 standardization. Furthermore, through our research, we have identified the mobile speed of user equipment (UE) as a crucial factor that impacts the optimal time window size for collecting input data in AI models. We have observed an inverse correlation between UE speed and the time window size. Accordingly, to mitigate unnecessary measurement overhead and latency, we propose that the determination of the time window size for input data collection should be based on the UE speed. Additionally, we will present our simulation results and provide a comprehensive analysis of this relationship.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10334007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10334007/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) has gained significant attention and extensive research across various fields in recent years. In the realm of wireless communication, researchers are exploring the use of AI to facilitate various physical layer (PHY) procedures. Within the standardization efforts of the Third Generation Partnership Project (3GPP), one prominent direction being explored is AI-based beam management (BM). The primary objective is to harness AI techniques for predicting optimal beams, thereby reducing measurement overhead and latency. This paper aims to discuss the progress made in AI-based beam management within the Release 18 standardization. Furthermore, through our research, we have identified the mobile speed of user equipment (UE) as a crucial factor that impacts the optimal time window size for collecting input data in AI models. We have observed an inverse correlation between UE speed and the time window size. Accordingly, to mitigate unnecessary measurement overhead and latency, we propose that the determination of the time window size for input data collection should be based on the UE speed. Additionally, we will present our simulation results and provide a comprehensive analysis of this relationship.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3GPP 中基于人工智能的波束管理:优化数据采集时间窗口以实现时域波束预测
近年来,人工智能(AI)在各个领域都获得了极大的关注和广泛的研究。在无线通信领域,研究人员正在探索使用人工智能来促进各种物理层(PHY)程序。在第三代合作伙伴计划(3GPP)的标准化工作中,一个突出的探索方向是基于人工智能的波束管理(BM)。其主要目标是利用人工智能技术预测最佳波束,从而减少测量开销和延迟。本文旨在讨论基于人工智能的波束管理在第 18 版标准化中取得的进展。此外,通过研究,我们发现用户设备(UE)的移动速度是影响人工智能模型中收集输入数据的最佳时间窗口大小的关键因素。我们观察到 UE 速度与时间窗口大小之间存在反相关关系。因此,为了减少不必要的测量开销和延迟,我们建议应根据 UE 速度来确定收集输入数据的时间窗口大小。此外,我们还将展示模拟结果,并对这种关系进行全面分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
Digital Twin-Empowered Green Mobility Management in Next-Gen Transportation Networks Fairness-Aware Utility Maximization for Multi-UAV-Aided Terrestrial Networks LiFi for Industry 4.0: Main Features, Implementation and Initial Testing of IEEE Std 802.15.13 Partial Learning-Based Iterative Detection of MIMO Systems Decentralized and Asymmetric Multi-Agent Learning in Construction Sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1