Electron irradiation of zein protein-loaded nano CaO2/CD for enhancing infectious diabetic wounds with adaptive hydrophobicity-to-hydrophilicity

IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Advances Pub Date : 2023-12-23 DOI:10.1016/j.mtadv.2023.100458
Lenian Zhou, Shang Guo, Zhenyou Dong, Pei Liu, Wenyan Shi, Longxiang Shen, Junhui Yin
{"title":"Electron irradiation of zein protein-loaded nano CaO2/CD for enhancing infectious diabetic wounds with adaptive hydrophobicity-to-hydrophilicity","authors":"Lenian Zhou, Shang Guo, Zhenyou Dong, Pei Liu, Wenyan Shi, Longxiang Shen, Junhui Yin","doi":"10.1016/j.mtadv.2023.100458","DOIUrl":null,"url":null,"abstract":"<p>Chronic diabetic cutaneous wounds resulting from inflammatory conditions present an ongoing challenge for current therapies and impose a significant burden on individuals with diabetes, impacting their quality of life. Infection-related diabetic skin wounds require dry conditions to inhibit bacterial growth. However, as the wounds progress, moisture becomes necessary to facilitate the healing process. In this study, we propose a novel therapeutic strategy for diabetic skin repair by creating bio-dressings with adjustable “hydrophobic” and “hydrophilic” characteristics to accommodate the changing stages of the disease. We developed a skin dressing by loading calcium peroxide (CaO<sub>2</sub>) nanoparticles onto carbon dots (CD)-modified irradiated zein (Ir-Zein). This dressing releases reactive oxygen species (ROS) from CaO<sub>2</sub>, providing antibacterial effects, while the presence of CD enables a sustained release of CaO<sub>2</sub>. The calcium ions produced by CaO<sub>2</sub> degradation further promote skin regeneration. Ir-Zein protein, a cost-effective and easily processed natural plant protein, exhibits excellent biocompatibility. Importantly, in diabetic rats with full-thickness skin defects, the CaO<sub>2</sub>/CD@Ir-Zein film significantly accelerated the healing of chronic wounds. Mechanistic investigations revealed that the film effectively reduced inflammation by inhibiting the polarization of macrophages towards the M1 phenotype and capturing pro-inflammatory cytokines. In summary, our findings demonstrate the effectiveness of the CaO<sub>2</sub>/CD@Ir-Zein film’s “adaptive hydrophobicity-to-hydrophilicity” in promoting the transition of chronic wounds from the inflammatory stage and skin repair. CaO<sub>2</sub>/CD@Ir Zein is a novel bio-dressing that can adapt to the changing environment of infected diabetic skin wound healing.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"64 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2023.100458","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic diabetic cutaneous wounds resulting from inflammatory conditions present an ongoing challenge for current therapies and impose a significant burden on individuals with diabetes, impacting their quality of life. Infection-related diabetic skin wounds require dry conditions to inhibit bacterial growth. However, as the wounds progress, moisture becomes necessary to facilitate the healing process. In this study, we propose a novel therapeutic strategy for diabetic skin repair by creating bio-dressings with adjustable “hydrophobic” and “hydrophilic” characteristics to accommodate the changing stages of the disease. We developed a skin dressing by loading calcium peroxide (CaO2) nanoparticles onto carbon dots (CD)-modified irradiated zein (Ir-Zein). This dressing releases reactive oxygen species (ROS) from CaO2, providing antibacterial effects, while the presence of CD enables a sustained release of CaO2. The calcium ions produced by CaO2 degradation further promote skin regeneration. Ir-Zein protein, a cost-effective and easily processed natural plant protein, exhibits excellent biocompatibility. Importantly, in diabetic rats with full-thickness skin defects, the CaO2/CD@Ir-Zein film significantly accelerated the healing of chronic wounds. Mechanistic investigations revealed that the film effectively reduced inflammation by inhibiting the polarization of macrophages towards the M1 phenotype and capturing pro-inflammatory cytokines. In summary, our findings demonstrate the effectiveness of the CaO2/CD@Ir-Zein film’s “adaptive hydrophobicity-to-hydrophilicity” in promoting the transition of chronic wounds from the inflammatory stage and skin repair. CaO2/CD@Ir Zein is a novel bio-dressing that can adapt to the changing environment of infected diabetic skin wound healing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子辐照玉米蛋白负载纳米 CaO2/CD 增强糖尿病感染性伤口的疏水性-亲水性适应性
炎症导致的慢性糖尿病皮肤伤口是当前疗法面临的一项持续挑战,给糖尿病患者造成了沉重负担,影响了他们的生活质量。与感染相关的糖尿病皮肤伤口需要干燥的环境来抑制细菌生长。然而,随着伤口的愈合,湿度成为促进愈合过程的必要条件。在这项研究中,我们提出了一种新的糖尿病皮肤修复治疗策略,即制作具有可调节的 "疏水 "和 "亲水 "特性的生物敷料,以适应疾病的变化阶段。我们将过氧化钙(CaO2)纳米粒子装载到碳点(CD)修饰的辐照玉米蛋白(Ir-Zein)上,开发出一种皮肤敷料。这种敷料能从 CaO2 中释放活性氧 (ROS),从而达到抗菌效果,而 CD 的存在则使 CaO2 得以持续释放。CaO2 降解产生的钙离子可进一步促进皮肤再生。玉米蛋白是一种成本低、易加工的天然植物蛋白,具有良好的生物相容性。重要的是,在全厚皮肤缺损的糖尿病大鼠身上,CaO2/CD@Ir-Zein 膜能显著加速慢性伤口的愈合。机理研究表明,该薄膜通过抑制巨噬细胞向 M1 表型极化和捕获促炎细胞因子,有效减轻了炎症反应。总之,我们的研究结果证明了 CaO2/CD@Ir-Zein 薄膜的 "疏水-亲水适应性 "在促进慢性伤口从炎症阶段过渡到皮肤修复方面的有效性。CaO2/CD@Ir Zein 是一种新型生物敷料,能够适应糖尿病感染性皮肤伤口愈合的环境变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Advances
Materials Today Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.30
自引率
2.00%
发文量
116
审稿时长
32 days
期刊介绍: Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.
期刊最新文献
Not only a matter of disorder in I-WP minimal surface-based photonic networks: Diffusive structural color in Sternotomis amabilis longhorn beetles Magnetic bilayer qubits: A bipartite quantum system Unraveling the role of relaxation and rejuvenation on the structure and deformation behavior of the Zr-based bulk metallic glass Vit105 Acoustic tweezer-driven assembly and anti-cancer property of microporous magnesium gallate Nanostructured proton-exchange membranes from self-cross-linking perfluoroalkyl-free block-co-polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1