{"title":"Effect of pH, NaCl concentration, and mAb concentration of feed solution on the filterability of Planova™ 20N and Planova™ BioEX","authors":"Chie Hashikawa-Muto, Yoshiro Yokoyama, Ryo Hamamoto, Kazuya Kobayashi, Yumiko Masuda, Koichi Nonaka","doi":"10.1002/btpr.3420","DOIUrl":null,"url":null,"abstract":"<p>Virus filtration is one of the most important steps in ensuring viral safety during the purification of monoclonal antibodies (mAbs) and other biotherapeutics derived from mammalian cell cultures. Regarding the various virus retentive filters, including Planova filters, a great deal of data has been reported on the virus retention capability and its mechanism. Along with the virus retention capability, filterability is a key performance indicator for designing a robust and high-throughput virus filtration step. In order to obtain higher filterability, optimization of the feed solution conditions, and filter selection is essential; however, limited data are available regarding the filtration characteristics of Planova filters. Furthermore, for Planova 20N and Planova BioEX, the virus retention characteristics were reported to differ due to their respective membrane materials and layer structures. Whether these filters differ in their filtration characteristics is an interesting question, but no comparative evaluations have been reported. In this study, the filterability of the two filters was investigated and compared using 15 feed mAb solutions of a single mAb selected by design of experiments with different combinations of pH, NaCl concentration, and mAb concentration. The filterability of Planova 20N was affected not only by the feed solution viscosity, but also by the mAb aggregate content of the feed mAb solution and mAb-membrane electrostatic interactions. In contrast, the filterability of Planova BioEX decreased under some buffer conditions. These findings and the established design spaces of these filters provide valuable insights into the process optimization of virus filtration.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btpr.3420","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3420","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Virus filtration is one of the most important steps in ensuring viral safety during the purification of monoclonal antibodies (mAbs) and other biotherapeutics derived from mammalian cell cultures. Regarding the various virus retentive filters, including Planova filters, a great deal of data has been reported on the virus retention capability and its mechanism. Along with the virus retention capability, filterability is a key performance indicator for designing a robust and high-throughput virus filtration step. In order to obtain higher filterability, optimization of the feed solution conditions, and filter selection is essential; however, limited data are available regarding the filtration characteristics of Planova filters. Furthermore, for Planova 20N and Planova BioEX, the virus retention characteristics were reported to differ due to their respective membrane materials and layer structures. Whether these filters differ in their filtration characteristics is an interesting question, but no comparative evaluations have been reported. In this study, the filterability of the two filters was investigated and compared using 15 feed mAb solutions of a single mAb selected by design of experiments with different combinations of pH, NaCl concentration, and mAb concentration. The filterability of Planova 20N was affected not only by the feed solution viscosity, but also by the mAb aggregate content of the feed mAb solution and mAb-membrane electrostatic interactions. In contrast, the filterability of Planova BioEX decreased under some buffer conditions. These findings and the established design spaces of these filters provide valuable insights into the process optimization of virus filtration.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.