首页 > 最新文献

Biotechnology Progress最新文献

英文 中文
Electrospun gelatin/hyaluronic acid nanofibers as a platform for uric acid delivery to neural tissue. 电纺明胶/透明质酸纳米纤维作为向神经组织输送尿酸的平台。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-10 DOI: 10.1002/btpr.3517
Reva M Street, Frank H Kung, Laura T Beringer, Daniel B Amchin, Bonnie L Firestein, Caroline L Schauer

Uric acid (UA) is an antioxidant that has been reported to be a neuroprotective compound for injuries and diseases, and specifically, diseases of the central nervous system. However, uric acid is highly insoluble in aqueous solutions, and high levels in the serum lead to gout, which limits its use in humans. Here, we develop a novel drug delivery platform that will release uric acid in a sustained manner for application to neural tissue. We demonstrate that one-step incorporation of UA into an electrospun gelatin/hyaluronic acid nanofiber mat results in controlled release of UA in culture medium. Taking a unique approach, we made solutions of 12% gelatin and 1% hyaluronic acid in a formic acid solvent and added UA for production of nanofiber mats. We then dehydrothermally crosslinked the mats and tested for release of UA into physiological cell culture medium. To test whether the mats have any detrimental effects on healthy nervous system tissue, we cultured spinal cord explants on the mats extended and assessed extensions from the explants. We observed that comparable numbers and lengths of dendrites are extended from the spinal cord tissue, regardless of the amount UA content in the mats. Our results suggest that electrospun gelatin/hyaluronic acid nanofibers can be used as a platform for sustained uric acid delivery to neural tissue without detrimental effects.

据报道,尿酸(UA)是一种抗氧化剂,对受伤和疾病,特别是中枢神经系统疾病具有神经保护作用。然而,尿酸在水溶液中极难溶解,血清中的高浓度尿酸会导致痛风,这限制了尿酸在人体中的应用。在此,我们开发了一种新型药物递送平台,可持续释放尿酸,应用于神经组织。我们证明,一步法将尿酸掺入电纺明胶/透明质酸纳米纤维垫,可在培养基中控制尿酸的释放。我们采用一种独特的方法,将 12% 的明胶和 1% 的透明质酸在甲酸溶剂中制成溶液,然后加入 UA,制成纳米纤维毡。然后,我们对垫子进行脱氢热交联,并测试其在生理细胞培养基中的尿素释放情况。为了测试纳米纤维毡是否会对健康的神经系统组织产生有害影响,我们在纳米纤维毡上培养脊髓外植体,并评估外植体的延伸情况。我们观察到,无论垫子中 UA 含量多少,脊髓组织延伸出的树突数量和长度都相当。我们的研究结果表明,电纺明胶/透明质酸纳米纤维可用作向神经组织持续输送尿酸的平台,而不会产生有害影响。
{"title":"Electrospun gelatin/hyaluronic acid nanofibers as a platform for uric acid delivery to neural tissue.","authors":"Reva M Street, Frank H Kung, Laura T Beringer, Daniel B Amchin, Bonnie L Firestein, Caroline L Schauer","doi":"10.1002/btpr.3517","DOIUrl":"https://doi.org/10.1002/btpr.3517","url":null,"abstract":"<p><p>Uric acid (UA) is an antioxidant that has been reported to be a neuroprotective compound for injuries and diseases, and specifically, diseases of the central nervous system. However, uric acid is highly insoluble in aqueous solutions, and high levels in the serum lead to gout, which limits its use in humans. Here, we develop a novel drug delivery platform that will release uric acid in a sustained manner for application to neural tissue. We demonstrate that one-step incorporation of UA into an electrospun gelatin/hyaluronic acid nanofiber mat results in controlled release of UA in culture medium. Taking a unique approach, we made solutions of 12% gelatin and 1% hyaluronic acid in a formic acid solvent and added UA for production of nanofiber mats. We then dehydrothermally crosslinked the mats and tested for release of UA into physiological cell culture medium. To test whether the mats have any detrimental effects on healthy nervous system tissue, we cultured spinal cord explants on the mats extended and assessed extensions from the explants. We observed that comparable numbers and lengths of dendrites are extended from the spinal cord tissue, regardless of the amount UA content in the mats. Our results suggest that electrospun gelatin/hyaluronic acid nanofibers can be used as a platform for sustained uric acid delivery to neural tissue without detrimental effects.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3517"},"PeriodicalIF":2.5,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-thermal plasma decontamination of microbes: a state of the art. 微生物的非热等离子净化:最新技术。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-27 DOI: 10.1002/btpr.3511
Yiyi Xu, Amarjeet Bassi

Microbial decontamination is a critical concern in various sectors, from healthcare to food processing. Traditional decontamination methods, while effective to a degree, present limitations in terms of environmental impact, efficiency, and potential harm to the target material. This review investigates the emerging realm of non-thermal plasma (NTP) as a promising alternative for microbial decontamination, emphasizing its mechanisms, reactor designs and applications. The mechanism decomposed into physical, chemical and biological effects of plasma, are elaborated upon to provide a foundational understanding of the intrinsic principles of plasma decontamination. Except for the generation type of NTP, reactors and other parameters by which NTP achieves microbial decontamination, emphasizing the design considerations and parameters that influence its efficacy. Moreover, the latest applications of NTP in decontaminating air, water, and surfaces, supported by the latest research findings in each domain are explored. Additionally, the perspectives on the future research tendencies of NTP decontamination and disinfection are highlighted with potential avenues for exploration and innovation. Through this comprehensive review, the aim is to underscore the potential of NTP, particularly DBD plasma, as a versatile, efficient, and environmentally friendly method for microbial decontamination.

从医疗保健到食品加工,微生物净化是各行各业都非常关注的问题。传统的净化方法虽然在一定程度上有效,但在环境影响、效率和对目标材料的潜在危害方面存在局限性。本综述研究了作为微生物去污的一种有前途的替代方法--非热等离子体(NTP)这一新兴领域,强调了其机理、反应器设计和应用。文章详细阐述了等离子体的物理、化学和生物效应的分解机理,以提供对等离子体去污内在原理的基本认识。除 NTP 的生成类型、反应器和 NTP 实现微生物净化的其他参数外,还强调了影响其功效的设计考虑因素和参数。此外,还探讨了 NTP 在净化空气、水和物体表面方面的最新应用,以及在各个领域的最新研究成果。此外,还强调了 NTP 去污和消毒的未来研究趋势,以及潜在的探索和创新途径。本综述旨在强调 NTP(尤其是 DBD 等离子体)作为一种多功能、高效、环保的微生物净化方法的潜力。
{"title":"Non-thermal plasma decontamination of microbes: a state of the art.","authors":"Yiyi Xu, Amarjeet Bassi","doi":"10.1002/btpr.3511","DOIUrl":"https://doi.org/10.1002/btpr.3511","url":null,"abstract":"<p><p>Microbial decontamination is a critical concern in various sectors, from healthcare to food processing. Traditional decontamination methods, while effective to a degree, present limitations in terms of environmental impact, efficiency, and potential harm to the target material. This review investigates the emerging realm of non-thermal plasma (NTP) as a promising alternative for microbial decontamination, emphasizing its mechanisms, reactor designs and applications. The mechanism decomposed into physical, chemical and biological effects of plasma, are elaborated upon to provide a foundational understanding of the intrinsic principles of plasma decontamination. Except for the generation type of NTP, reactors and other parameters by which NTP achieves microbial decontamination, emphasizing the design considerations and parameters that influence its efficacy. Moreover, the latest applications of NTP in decontaminating air, water, and surfaces, supported by the latest research findings in each domain are explored. Additionally, the perspectives on the future research tendencies of NTP decontamination and disinfection are highlighted with potential avenues for exploration and innovation. Through this comprehensive review, the aim is to underscore the potential of NTP, particularly DBD plasma, as a versatile, efficient, and environmentally friendly method for microbial decontamination.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3511"},"PeriodicalIF":2.5,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic model of minute virus of mice elution behavior in anion exchange chromatography purification. 阴离子交换色谱纯化过程中小鼠微小病毒洗脱行为的机理模型。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-23 DOI: 10.1002/btpr.3516
Ryunosuke Kitamura, Lena Enghauser, Riku Miyamoto, Takahiro Ichikawa, Takaki Aiso, Yumiko Masuda, Daisuke Kajihara, Hirofumi Kakihara, Koichi Nonaka

This study aimed to propose a methodology for developing a mechanistic model for viral clearance of the minute virus of mice (MVM) on flow-through anion exchange (AEX) chromatography. Protein surface analysis was applied to investigate the possibility of molecular interaction between the recombinant biotherapeutic and MVM. The protein product-free Tris buffers were spiked with MVM, and the MVM elution profile from AEX chromatography was quantitatively analyzed using quantitative polymerase chain reaction (qPCR) for pooled fractions. GoSilico™ Chromatography Modeling Software was applied to develop the mechanistic models for MVM species. For evaluating the visual fit of the developed model, the R2 of intact MVM virions and uncoated capsids between the simulated and measured amount in each fraction are 0.880 and 0.948, respectively. Response surface plots of logarithmic reduction values (LRV) against pH and conductivity in loaded sample were generated to show the range for suitable loaded sample conditions for achieving a good LRV. To evaluate the applicability of the developed MVM elution model to a recombinant biotherapeutic, two demonstrations of AEX chromatography purification were performed with a loaded sample of a model monoclonal antibody. The peaks of the MVM species in the elution step of both runs were accurately simulated by the developed model. In addition, to assess the possibility of molecular interaction between the virus and the target protein significantly affecting the MVM elution behavior, the antibody's surface was evaluated in terms of hydrophobicity/hydrophilicity using surface analysis.

本研究旨在提出一种方法,用于建立流动阴离子交换(AEX)色谱法清除小鼠细小病毒(MVM)病毒的机理模型。蛋白质表面分析被用来研究重组生物治疗药物与MVM之间分子相互作用的可能性。在不含蛋白质产物的 Tris 缓冲液中添加 MVM,并使用定量聚合酶链反应(qPCR)对汇集馏分进行定量分析。GoSilico™ 色谱建模软件用于开发 MVM 物种的机理模型。为评估所建模型的视觉拟合度,各馏分中完整 MVM 病毒和未包被囊壳的模拟量与测量值之间的 R2 分别为 0.880 和 0.948。生成了负载样品中对数还原值(LRV)与 pH 值和电导率的响应面图,以显示实现良好 LRV 的合适负载样品条件的范围。为了评估所开发的 MVM 洗脱模型在重组生物治疗药物中的适用性,使用模型单克隆抗体的负载样品进行了两次 AEX 色谱纯化演示。所开发的模型准确地模拟了两次运行的洗脱步骤中 MVM 物种的峰值。此外,为了评估病毒与目标蛋白之间的分子相互作用是否会显著影响 MVM 的洗脱行为,还利用表面分析法对抗体表面的疏水性/亲水性进行了评估。
{"title":"Mechanistic model of minute virus of mice elution behavior in anion exchange chromatography purification.","authors":"Ryunosuke Kitamura, Lena Enghauser, Riku Miyamoto, Takahiro Ichikawa, Takaki Aiso, Yumiko Masuda, Daisuke Kajihara, Hirofumi Kakihara, Koichi Nonaka","doi":"10.1002/btpr.3516","DOIUrl":"https://doi.org/10.1002/btpr.3516","url":null,"abstract":"<p><p>This study aimed to propose a methodology for developing a mechanistic model for viral clearance of the minute virus of mice (MVM) on flow-through anion exchange (AEX) chromatography. Protein surface analysis was applied to investigate the possibility of molecular interaction between the recombinant biotherapeutic and MVM. The protein product-free Tris buffers were spiked with MVM, and the MVM elution profile from AEX chromatography was quantitatively analyzed using quantitative polymerase chain reaction (qPCR) for pooled fractions. GoSilico™ Chromatography Modeling Software was applied to develop the mechanistic models for MVM species. For evaluating the visual fit of the developed model, the R<sup>2</sup> of intact MVM virions and uncoated capsids between the simulated and measured amount in each fraction are 0.880 and 0.948, respectively. Response surface plots of logarithmic reduction values (LRV) against pH and conductivity in loaded sample were generated to show the range for suitable loaded sample conditions for achieving a good LRV. To evaluate the applicability of the developed MVM elution model to a recombinant biotherapeutic, two demonstrations of AEX chromatography purification were performed with a loaded sample of a model monoclonal antibody. The peaks of the MVM species in the elution step of both runs were accurately simulated by the developed model. In addition, to assess the possibility of molecular interaction between the virus and the target protein significantly affecting the MVM elution behavior, the antibody's surface was evaluated in terms of hydrophobicity/hydrophilicity using surface analysis.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3516"},"PeriodicalIF":2.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing in silico flowsheet optimization strategies in biopharmaceutical downstream processes. 比较生物制药下游工艺中的硅学流程优化策略。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-18 DOI: 10.1002/btpr.3514
Daphne Keulen, Myrto Apostolidi, Geoffroy Geldhof, Olivier Le Bussy, Martin Pabst, Marcel Ottens

The challenging task of designing biopharmaceutical downstream processes is initially to select the type of unit operations, followed by optimizing their operating conditions. For complex flowsheet optimizations, the strategy becomes crucial in terms of duration and outcome. In this study, we compared three optimization strategies, namely, simultaneous, top-to-bottom, and superstructure decomposition. Moreover, all strategies were evaluated by either using chromatographic Mechanistic Models (MMs) or Artificial Neural Networks (ANNs). An overall evaluation of 39 flowsheets was performed, including a buffer-exchange step between the chromatography operations. All strategies identified orthogonal structures to be optimal, and the weighted overall performance values were generally consistent between the MMs and ANNs. In terms of time-efficiency, the decomposition method with MMs stands out when utilizing multiple cores on a multiprocessing system for simulations. This study analyses the influence of different optimization strategies on flowsheet optimization and advices on suitable strategies and modeling techniques for specific scenarios.

设计生物制药下游工艺的艰巨任务首先是选择单元操作的类型,然后是优化其操作条件。对于复杂的流程优化来说,优化策略对持续时间和结果至关重要。在本研究中,我们比较了三种优化策略,即同步、从上到下和上层结构分解。此外,我们还使用色谱机理模型(MM)或人工神经网络(ANN)对所有策略进行了评估。对 39 个流程进行了整体评估,包括色谱操作之间的缓冲交换步骤。所有策略都确定了最佳的正交结构,MM 和 ANN 的加权总体性能值基本一致。就时间效率而言,在利用多处理器系统的多个内核进行模拟时,采用 MMs 的分解方法表现突出。本研究分析了不同优化策略对流程表优化的影响,并就特定情况下的合适策略和建模技术提出了建议。
{"title":"Comparing in silico flowsheet optimization strategies in biopharmaceutical downstream processes.","authors":"Daphne Keulen, Myrto Apostolidi, Geoffroy Geldhof, Olivier Le Bussy, Martin Pabst, Marcel Ottens","doi":"10.1002/btpr.3514","DOIUrl":"https://doi.org/10.1002/btpr.3514","url":null,"abstract":"<p><p>The challenging task of designing biopharmaceutical downstream processes is initially to select the type of unit operations, followed by optimizing their operating conditions. For complex flowsheet optimizations, the strategy becomes crucial in terms of duration and outcome. In this study, we compared three optimization strategies, namely, simultaneous, top-to-bottom, and superstructure decomposition. Moreover, all strategies were evaluated by either using chromatographic Mechanistic Models (MMs) or Artificial Neural Networks (ANNs). An overall evaluation of 39 flowsheets was performed, including a buffer-exchange step between the chromatography operations. All strategies identified orthogonal structures to be optimal, and the weighted overall performance values were generally consistent between the MMs and ANNs. In terms of time-efficiency, the decomposition method with MMs stands out when utilizing multiple cores on a multiprocessing system for simulations. This study analyses the influence of different optimization strategies on flowsheet optimization and advices on suitable strategies and modeling techniques for specific scenarios.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3514"},"PeriodicalIF":2.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General strategies for IgG-like bispecific antibody purification. IgG 样双特异性抗体纯化的一般策略。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-15 DOI: 10.1002/btpr.3515
Yifeng Li

Bispecific antibodies (bsAbs) can simultaneously bind two different antigens or epitopes. Their dual-targeting capability enables novel mechanisms of action, gaining therapeutic advantages over conventional monospecific mAbs. In recent years, the number of bsAbs grows rapidly and bsAbs under development are available in diverse formats. In particular, Fc-containing IgG-like bsAbs, which represent the major group, can be constructed in asymmetric or symmetric format. For asymmetric ones, whose assembly requires multiple distinct chains, although numerous strategies have been developed to promote desired chain pairing, product-related variants such as free chains, half molecules and mispaired species are usually present at various levels. For symmetric ones, increased level of aggregates and truncating variants is often associated with their production. In general, bsAbs pose greater challenges to the downstream team than regular mAbs. In the past few years, our team successfully developed the downstream process for over 70 bsAbs in greater than 30 different formats and accumulated substantial experience. This review introduces general strategies that we have used while purifying these challenging molecules.

双特异性抗体(bsAbs)可同时结合两种不同的抗原或表位。与传统的单特异性 mAbs 相比,双特异性抗体具有双重靶向能力,可实现新的作用机制,从而获得治疗优势。近年来,bsAbs 的数量迅速增长,开发中的 bsAbs 形式多样。其中,以含 Fc 的 IgG 样 bsAbs 为主,它们可以以非对称或对称的形式构建。对于非对称形式的 bsAbs,其组装需要多条不同的链,尽管已开发出许多策略来促进所需的链配对,但与产品相关的变体,如游离链、半分子和配对错误的物种通常会在不同程度上存在。对于对称性抗体,聚集体和截断变体的增加往往与抗体的生产有关。一般来说,与普通 mAbs 相比,bsAbs 给下游团队带来了更大的挑战。在过去几年中,我们的团队成功开发了 30 多种不同格式的 70 多种 bsAbs 的下游工艺,积累了丰富的经验。本综述将介绍我们在纯化这些具有挑战性的分子时所采用的一般策略。
{"title":"General strategies for IgG-like bispecific antibody purification.","authors":"Yifeng Li","doi":"10.1002/btpr.3515","DOIUrl":"https://doi.org/10.1002/btpr.3515","url":null,"abstract":"<p><p>Bispecific antibodies (bsAbs) can simultaneously bind two different antigens or epitopes. Their dual-targeting capability enables novel mechanisms of action, gaining therapeutic advantages over conventional monospecific mAbs. In recent years, the number of bsAbs grows rapidly and bsAbs under development are available in diverse formats. In particular, Fc-containing IgG-like bsAbs, which represent the major group, can be constructed in asymmetric or symmetric format. For asymmetric ones, whose assembly requires multiple distinct chains, although numerous strategies have been developed to promote desired chain pairing, product-related variants such as free chains, half molecules and mispaired species are usually present at various levels. For symmetric ones, increased level of aggregates and truncating variants is often associated with their production. In general, bsAbs pose greater challenges to the downstream team than regular mAbs. In the past few years, our team successfully developed the downstream process for over 70 bsAbs in greater than 30 different formats and accumulated substantial experience. This review introduces general strategies that we have used while purifying these challenging molecules.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3515"},"PeriodicalIF":2.5,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the biocatalysis of psilocybin and other tryptamines: Enzymatic pathways, synthetic strategies, and industrial implications. 探索迷幻药和其他色胺的生物催化:酶途径、合成策略和工业影响。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-04 DOI: 10.1002/btpr.3513
Lucas Henrique Junges, Marcelo Müller-Santos

Tryptamines play diverse roles as neurotransmitters and psychoactive compounds found in various organisms. Psilocybin, a notable tryptamine, has garnered attention for its therapeutic potential in treating mental health disorders like depression and anxiety. Despite its promising applications, current extraction methods for psilocybin are labor-intensive and economically limiting. We suggest biocatalysis as a sustainable alternative, leveraging enzymes to synthesize psilocybin and other tryptamines efficiently. By elucidating psilocybin biosynthesis pathways, researchers aim to advance synthetic methodologies and industrial applications. This review underscores the transformative potential of biocatalysis in enhancing our understanding of tryptamine biosynthesis and facilitating the production of high-purity psilocybin and other tryptamines for therapeutic and research use.

色胺作为神经递质和精神活性化合物在各种生物体内发挥着不同的作用。迷幻药是一种著名的色胺,因其在治疗抑郁症和焦虑症等精神疾病方面的治疗潜力而备受关注。尽管其应用前景广阔,但目前提取迷幻药的方法需要耗费大量人力,且经济效益有限。我们建议将生物催化作为一种可持续的替代方法,利用酶来高效合成迷幻药和其他色胺。通过阐明迷幻药的生物合成途径,研究人员旨在推进合成方法和工业应用。这篇综述强调了生物催化的变革潜力,有助于加深我们对色胺生物合成的了解,促进高纯度迷幻药和其他色胺的生产,用于治疗和研究。
{"title":"Exploring the biocatalysis of psilocybin and other tryptamines: Enzymatic pathways, synthetic strategies, and industrial implications.","authors":"Lucas Henrique Junges, Marcelo Müller-Santos","doi":"10.1002/btpr.3513","DOIUrl":"10.1002/btpr.3513","url":null,"abstract":"<p><p>Tryptamines play diverse roles as neurotransmitters and psychoactive compounds found in various organisms. Psilocybin, a notable tryptamine, has garnered attention for its therapeutic potential in treating mental health disorders like depression and anxiety. Despite its promising applications, current extraction methods for psilocybin are labor-intensive and economically limiting. We suggest biocatalysis as a sustainable alternative, leveraging enzymes to synthesize psilocybin and other tryptamines efficiently. By elucidating psilocybin biosynthesis pathways, researchers aim to advance synthetic methodologies and industrial applications. This review underscores the transformative potential of biocatalysis in enhancing our understanding of tryptamine biosynthesis and facilitating the production of high-purity psilocybin and other tryptamines for therapeutic and research use.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3513"},"PeriodicalIF":2.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From protein structure to an optimized chromatographic capture step using multiscale modeling. 利用多尺度建模从蛋白质结构到优化色谱捕获步骤。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-29 DOI: 10.1002/btpr.3505
Daphne Keulen, Tim Neijenhuis, Adamantia Lazopoulou, Roxana Disela, Geoffroy Geldhof, Olivier Le Bussy, Marieke E Klijn, Marcel Ottens

Optimizing a biopharmaceutical chromatographic purification process is currently the greatest challenge during process development. A lack of process understanding calls for extensive experimental efforts in pursuit of an optimal process. In silico techniques, such as mechanistic or data driven modeling, enhance the understanding, allowing more cost-effective and time efficient process optimization. This work presents a modeling strategy integrating quantitative structure property relationship (QSPR) models and chromatographic mechanistic models (MM) to optimize a cation exchange (CEX) capture step, limiting experiments. In QSPR, structural characteristics obtained from the protein structure are used to describe physicochemical behavior. This QSPR information can be applied in MM to predict the chromatogram and optimize the entire process. To validate this approach, retention profiles of six proteins were determined experimentally from mixtures, at different pH (3.5, 4.3, 5.0, and 7.0). Four proteins at different pH's were used to train QSPR models predicting the retention volumes and characteristic charge, subsequently the equilibrium constant was determined. For an unseen protein knowing only the protein structure, the retention peak difference between the modeled and experimental peaks was 0.2% relative to the gradient length (60 column volume). Next, the CEX capture step was optimized, demonstrating a consistent result in both the experimental and QSPR-based methods. The impact of model parameter confidence on the final optimization revealed two viable process conditions, one of which is similar to the optimization achieved using experimentally obtained parameters. The multiscale modeling approach reduces the required experimental effort by identification of initial process conditions, which can be optimized.

优化生物制药色谱纯化工艺是目前工艺开发过程中面临的最大挑战。由于缺乏对工艺的了解,因此需要进行大量实验,以追求最佳工艺。机理建模或数据驱动建模等硅学技术可加深对工艺的理解,从而实现更具成本效益和时间效率的工艺优化。本研究提出了一种建模策略,将定量结构属性关系模型(QSPR)和色谱机理模型(MM)整合在一起,以优化阳离子交换(CEX)捕集步骤,限制实验次数。在 QSPR 中,从蛋白质结构中获得的结构特征被用来描述物理化学行为。这种 QSPR 信息可用于 MM 预测色谱图并优化整个过程。为了验证这种方法,实验测定了不同 pH 值(3.5、4.3、5.0 和 7.0)下混合物中六种蛋白质的保留曲线。不同 pH 值下的四种蛋白质被用来训练 QSPR 模型,预测保留体积和特征电荷,随后确定平衡常数。对于只知道蛋白质结构的未知蛋白质,相对于梯度长度(60 柱体积),模型峰和实验峰之间的保留峰差异为 0.2%。接下来,对 CEX 捕捉步骤进行了优化,结果显示实验法和基于 QSPR 的方法结果一致。模型参数置信度对最终优化结果的影响揭示了两种可行的工艺条件,其中一种与使用实验参数实现的优化结果类似。多尺度建模方法通过确定可优化的初始工艺条件,减少了所需的实验工作量。
{"title":"From protein structure to an optimized chromatographic capture step using multiscale modeling.","authors":"Daphne Keulen, Tim Neijenhuis, Adamantia Lazopoulou, Roxana Disela, Geoffroy Geldhof, Olivier Le Bussy, Marieke E Klijn, Marcel Ottens","doi":"10.1002/btpr.3505","DOIUrl":"https://doi.org/10.1002/btpr.3505","url":null,"abstract":"<p><p>Optimizing a biopharmaceutical chromatographic purification process is currently the greatest challenge during process development. A lack of process understanding calls for extensive experimental efforts in pursuit of an optimal process. In silico techniques, such as mechanistic or data driven modeling, enhance the understanding, allowing more cost-effective and time efficient process optimization. This work presents a modeling strategy integrating quantitative structure property relationship (QSPR) models and chromatographic mechanistic models (MM) to optimize a cation exchange (CEX) capture step, limiting experiments. In QSPR, structural characteristics obtained from the protein structure are used to describe physicochemical behavior. This QSPR information can be applied in MM to predict the chromatogram and optimize the entire process. To validate this approach, retention profiles of six proteins were determined experimentally from mixtures, at different pH (3.5, 4.3, 5.0, and 7.0). Four proteins at different pH's were used to train QSPR models predicting the retention volumes and characteristic charge, subsequently the equilibrium constant was determined. For an unseen protein knowing only the protein structure, the retention peak difference between the modeled and experimental peaks was 0.2% relative to the gradient length (60 column volume). Next, the CEX capture step was optimized, demonstrating a consistent result in both the experimental and QSPR-based methods. The impact of model parameter confidence on the final optimization revealed two viable process conditions, one of which is similar to the optimization achieved using experimentally obtained parameters. The multiscale modeling approach reduces the required experimental effort by identification of initial process conditions, which can be optimized.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3505"},"PeriodicalIF":2.5,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CHO stable pool fed-batch process development of SARS-CoV-2 spike protein production: Impact of aeration conditions and feeding strategies. 生产 SARS-CoV-2 穗状病毒蛋白的 CHO 稳定池喂料批次工艺开发:通气条件和喂料策略的影响。
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-27 DOI: 10.1002/btpr.3507
Sebastian-Juan Reyes, Phuong Lan Pham, Yves Durocher, Olivier Henry

Technology scale-up and transfer are a fundamental and critical part of process development in biomanufacturing. Important bioreactor hydrodynamic characteristics such as working volume, overhead gas flow rate, volumetric power input (P/V), impeller type, agitation regimen, sparging aeration strategy, sparger type, and kLa must be selected based on key performance indicators (KPI) to ensure a smooth and seamless process scale-up and transfer. Finding suitable operational setpoints and developing an efficient feeding regimen to ensure process efficacy and consistency are instrumental. In this investigation, process development of a cumate inducible Chinese hamster ovary (CHO) stable pool expressing trimeric SARS-CoV-2 spike protein in 1.8 L benchtop stirred-tank bioreactors is detailed. Various dissolved oxygen levels and aeration air caps were studied to determine their impact on cell growth and metabolism, culture longevity, and endpoint product titers. Once hydrodynamic conditions were tuned to an optimal zone, various feeding strategies were explored to increase culture performance. Dynamic feedings such as feeding based on current culture volume, viable cell density (VCD), oxygen uptake rate (OUR), and bio-capacitance signals were tested and compared to standard bolus addition. Increases in integral of viable cell concentration (IVCC) (1.25-fold) and protein yield (2.52-fold), as well as greater culture longevity (extension of 5 days) were observed in dynamic feeding strategies when compared to periodic bolus feeding. Our study emphasizes the benefits of designing feeding strategies around metabolically relevant signals such as OUR and bio-capacitance signals.

技术放大和转让是生物制造工艺开发的基础和关键部分。必须根据关键性能指标 (KPI) 选择重要的生物反应器流体动力学特性,如工作容积、顶置气体流速、容积功率输入 (P/V)、叶轮类型、搅拌方案、喷射曝气策略、喷射器类型和 kLa,以确保工艺放大和转移顺利无缝。找到合适的操作设定点和制定高效的进料方案以确保工艺的有效性和一致性至关重要。在这项研究中,详细介绍了在 1.8 升台式搅拌罐生物反应器中表达三聚 SARS-CoV-2 尖峰蛋白的积乳酸诱导型中国仓鼠卵巢 (CHO) 稳定池的工艺开发。研究了各种溶解氧水平和通气气帽,以确定它们对细胞生长和新陈代谢、培养寿命和终点产品滴度的影响。水动力条件调整到最佳区域后,研究人员探索了各种进料策略,以提高培养性能。测试了动态喂料,如根据当前培养体积、存活细胞密度(VCD)、摄氧率(OUR)和生物电容信号喂料,并与标准栓剂添加进行了比较。与定期栓剂喂养相比,动态喂养策略观察到存活细胞浓度积分(IVCC)(1.25 倍)和蛋白质产量(2.52 倍)的增加,以及更长的培养寿命(延长 5 天)。我们的研究强调了围绕新陈代谢相关信号(如 OUR 和生物电容信号)设计喂养策略的益处。
{"title":"CHO stable pool fed-batch process development of SARS-CoV-2 spike protein production: Impact of aeration conditions and feeding strategies.","authors":"Sebastian-Juan Reyes, Phuong Lan Pham, Yves Durocher, Olivier Henry","doi":"10.1002/btpr.3507","DOIUrl":"https://doi.org/10.1002/btpr.3507","url":null,"abstract":"<p><p>Technology scale-up and transfer are a fundamental and critical part of process development in biomanufacturing. Important bioreactor hydrodynamic characteristics such as working volume, overhead gas flow rate, volumetric power input (P/V), impeller type, agitation regimen, sparging aeration strategy, sparger type, and k<sub>L</sub>a must be selected based on key performance indicators (KPI) to ensure a smooth and seamless process scale-up and transfer. Finding suitable operational setpoints and developing an efficient feeding regimen to ensure process efficacy and consistency are instrumental. In this investigation, process development of a cumate inducible Chinese hamster ovary (CHO) stable pool expressing trimeric SARS-CoV-2 spike protein in 1.8 L benchtop stirred-tank bioreactors is detailed. Various dissolved oxygen levels and aeration air caps were studied to determine their impact on cell growth and metabolism, culture longevity, and endpoint product titers. Once hydrodynamic conditions were tuned to an optimal zone, various feeding strategies were explored to increase culture performance. Dynamic feedings such as feeding based on current culture volume, viable cell density (VCD), oxygen uptake rate (OUR), and bio-capacitance signals were tested and compared to standard bolus addition. Increases in integral of viable cell concentration (IVCC) (1.25-fold) and protein yield (2.52-fold), as well as greater culture longevity (extension of 5 days) were observed in dynamic feeding strategies when compared to periodic bolus feeding. Our study emphasizes the benefits of designing feeding strategies around metabolically relevant signals such as OUR and bio-capacitance signals.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3507"},"PeriodicalIF":2.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanosensor based on HP-MAP1 and carbon nanotubes for bacteria detection. 基于 HP-MAP1 和碳纳米管的细菌检测纳米传感器
IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-26 DOI: 10.1002/btpr.3510
Winne F S M Silva, Ludovico Migliolo, Patrícia S Silva, Glaucia M S Lima, Maria D L Oliveira, Cesar A S Andrade

Healthcare-associated infections (HAIs) pose significant challenges to global health due to pathogen complexity and antimicrobial resistance. Biosensors utilizing antimicrobial peptides offer innovative solutions. Hylarana picturata Multiple Active Peptide 1 (Hp-MAP1), derived from Temporin-PTA, exhibits antibacterial properties sourced from the skin secretions of the Malaysian fire-bellied frog. An innovative sensing layer was developed for the electrochemical biorecognition of diverse pathogens: Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. Electrochemical impedance spectroscopy differentiated microorganisms based on distinct electrochemical responses. The sensor layer, composed of functionalized multi-walled carbon nanotubes (MWCNTs) associated with Hp-MAP1, exhibited varying levels of charge transfer resistance (RCT) for different microorganisms. Gram-negative species, especially P. aeruginosa, displayed higher RCT values, indicating better impedimetric responses. Excellent LODs were observed for P. aeruginosa (0.60), K. pneumoniae (0.42), E. coli (0.67), and S. aureus (0.59), highlighting the efficacy of the MWCNTs/Hp-MAP1 biosensor in microbial identification. The MWCNTs/Hp-MAP1 biosensor platform presents a promising and effective microbial identification strategy with potential healthcare applications to mitigate HAIs and enhance patient care.

由于病原体的复杂性和抗菌药的耐药性,医疗相关感染(HAIs)给全球健康带来了重大挑战。利用抗菌肽的生物传感器提供了创新的解决方案。从 Temporin-PTA 中提取的 Hylarana picturata 多活性肽 1 (Hp-MAP1)具有抗菌特性,其来源是马来西亚火腹蛙的皮肤分泌物。为电化学生物识别各种病原体开发了一种创新的传感层:铜绿假单胞菌、肺炎克雷伯氏菌、大肠杆菌和金黄色葡萄球菌。电化学阻抗光谱根据不同的电化学反应区分微生物。传感器层由与 Hp-MAP1 相关的功能化多壁碳纳米管(MWCNTs)组成,对不同微生物表现出不同程度的电荷转移电阻(RCT)。革兰氏阴性菌,尤其是铜绿假单胞菌,显示出更高的 RCT 值,表明阻抗响应更好。对于铜绿假单胞菌(0.60)、肺炎双球菌(0.42)、大肠杆菌(0.67)和金黄色葡萄球菌(0.59),观察到了极佳的 LOD 值,这凸显了 MWCNTs/Hp-MAP1 生物传感器在微生物鉴定方面的功效。MWCNTs/Hp-MAP1 生物传感器平台是一种前景广阔的有效微生物鉴定策略,具有潜在的医疗保健应用价值,可减轻 HAIs 并加强病人护理。
{"title":"Nanosensor based on HP-MAP1 and carbon nanotubes for bacteria detection.","authors":"Winne F S M Silva, Ludovico Migliolo, Patrícia S Silva, Glaucia M S Lima, Maria D L Oliveira, Cesar A S Andrade","doi":"10.1002/btpr.3510","DOIUrl":"https://doi.org/10.1002/btpr.3510","url":null,"abstract":"<p><p>Healthcare-associated infections (HAIs) pose significant challenges to global health due to pathogen complexity and antimicrobial resistance. Biosensors utilizing antimicrobial peptides offer innovative solutions. Hylarana picturata Multiple Active Peptide 1 (Hp-MAP1), derived from Temporin-PTA, exhibits antibacterial properties sourced from the skin secretions of the Malaysian fire-bellied frog. An innovative sensing layer was developed for the electrochemical biorecognition of diverse pathogens: Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. Electrochemical impedance spectroscopy differentiated microorganisms based on distinct electrochemical responses. The sensor layer, composed of functionalized multi-walled carbon nanotubes (MWCNTs) associated with Hp-MAP1, exhibited varying levels of charge transfer resistance (R<sub>CT</sub>) for different microorganisms. Gram-negative species, especially P. aeruginosa, displayed higher R<sub>CT</sub> values, indicating better impedimetric responses. Excellent LODs were observed for P. aeruginosa (0.60), K. pneumoniae (0.42), E. coli (0.67), and S. aureus (0.59), highlighting the efficacy of the MWCNTs/Hp-MAP1 biosensor in microbial identification. The MWCNTs/Hp-MAP1 biosensor platform presents a promising and effective microbial identification strategy with potential healthcare applications to mitigate HAIs and enhance patient care.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3510"},"PeriodicalIF":2.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid modeling for in silico optimization of a dynamic perfusion cell culture process 用于动态灌流细胞培养过程硅优化的混合模型
IF 2.9 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-18 DOI: 10.1002/btpr.3503
Piyush Agarwal, Chris McCready, Say Kong Ng, Jake Chng Ng, Jeroen van de Laar, Maarten Pennings, Gerben Zijlstra
The bio‐pharmaceutical industry heavily relies on mammalian cells for the production of bio‐therapeutic proteins. The complexity of implementing and high cost‐of‐goods of these processes are currently limiting more widespread patient access. This is driving efforts to enhance cell culture productivity and cost reduction. Upstream process intensification (PI), using perfusion approaches in the seed train and/or the main bioreactor, has shown substantial promise to enhance productivity. However, developing optimal process conditions for perfusion‐based processes remain challenging due to resource and time constraints. Model‐based optimization offers a solution by systematically screening process parameters like temperature, pH, and culture media to find the optimum conditions in silico. To our knowledge, this is the first experimentally validated model to explain the perfusion dynamics under different operating conditions and scales for process optimization. The hybrid model accurately describes Chinese hamster ovary (CHO) cell culture growth dynamics and a neural network model explains the production of mAb, allowing for optimization of media exchange rates. Results from six perfusion runs in Ambr® 250 demonstrated high accuracy, confirming the model's utility. Further, the implementation of dynamic media exchange rate schedule determined through model‐based optimization resulted in 50% increase in volumetric productivity. Additionally, two 5 L‐scale experiments validated the model's reliable extrapolation capabilities to large bioreactors. This approach could reduce the number of wet lab experiments needed for culture process optimization, offering a promising avenue for improving productivity, cost‐of‐goods in bio‐pharmaceutical manufacturing, in turn improving patient access to pivotal medicine.
生物制药行业严重依赖哺乳动物细胞来生产生物治疗蛋白。目前,实施这些工艺的复杂性和高昂的商品成本限制了患者更广泛地使用这些工艺。这推动了提高细胞培养生产率和降低成本的努力。在种子系和/或主生物反应器中使用灌流方法进行上游工艺强化(PI),已显示出提高生产率的巨大前景。然而,由于资源和时间的限制,为基于灌流的工艺开发最佳工艺条件仍具有挑战性。基于模型的优化提供了一种解决方案,即通过系统筛选温度、pH 值和培养基等工艺参数,找到最佳的硅学条件。据我们所知,这是首个经过实验验证的模型,用于解释不同操作条件和规模下的灌流动态,以实现工艺优化。该混合模型准确地描述了中国仓鼠卵巢(CHO)细胞培养的生长动态,神经网络模型则解释了 mAb 的生产,从而实现了培养基交换率的优化。在 Ambr® 250 中进行的六次灌流运行结果表明,该模型具有很高的准确性,证实了其实用性。此外,通过基于模型的优化确定的动态培养基交换率计划的实施使体积生产率提高了 50%。此外,两个 5 升规模的实验验证了该模型对大型生物反应器的可靠外推能力。这种方法可以减少培养过程优化所需的湿实验室实验数量,为提高生物制药生产的生产率和产品成本提供了一条很有前景的途径,进而改善了患者获得关键药物的机会。
{"title":"Hybrid modeling for in silico optimization of a dynamic perfusion cell culture process","authors":"Piyush Agarwal, Chris McCready, Say Kong Ng, Jake Chng Ng, Jeroen van de Laar, Maarten Pennings, Gerben Zijlstra","doi":"10.1002/btpr.3503","DOIUrl":"https://doi.org/10.1002/btpr.3503","url":null,"abstract":"The bio‐pharmaceutical industry heavily relies on mammalian cells for the production of bio‐therapeutic proteins. The complexity of implementing and high cost‐of‐goods of these processes are currently limiting more widespread patient access. This is driving efforts to enhance cell culture productivity and cost reduction. Upstream process intensification (PI), using perfusion approaches in the seed train and/or the main bioreactor, has shown substantial promise to enhance productivity. However, developing optimal process conditions for perfusion‐based processes remain challenging due to resource and time constraints. Model‐based optimization offers a solution by systematically screening process parameters like temperature, pH, and culture media to find the optimum conditions in silico. To our knowledge, this is the first experimentally validated model to explain the perfusion dynamics under different operating conditions and scales for process optimization. The hybrid model accurately describes Chinese hamster ovary (CHO) cell culture growth dynamics and a neural network model explains the production of mAb, allowing for optimization of media exchange rates. Results from six perfusion runs in Ambr® 250 demonstrated high accuracy, confirming the model's utility. Further, the implementation of dynamic media exchange rate schedule determined through model‐based optimization resulted in 50% increase in volumetric productivity. Additionally, two 5 L‐scale experiments validated the model's reliable extrapolation capabilities to large bioreactors. This approach could reduce the number of wet lab experiments needed for culture process optimization, offering a promising avenue for improving productivity, cost‐of‐goods in bio‐pharmaceutical manufacturing, in turn improving patient access to pivotal medicine.","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":"54 1","pages":"e3503"},"PeriodicalIF":2.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biotechnology Progress
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1