J Lin, B Li, Q Xu, Y S Liu, Y L Kang, X Wang, Y Wang, Y Lei, Y L Bai, X M Li, J Zhou
{"title":"DACH1 attenuated PA-induced renal tubular injury through TLR4/MyD88/NF-κB and TGF-β/Smad signalling pathway.","authors":"J Lin, B Li, Q Xu, Y S Liu, Y L Kang, X Wang, Y Wang, Y Lei, Y L Bai, X M Li, J Zhou","doi":"10.1007/s40618-023-02253-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Palmitic acid (PA), the major saturated fatty acid in the blood, often induces the initiation and progression of diabetic kidney disease (DKD). However, the underlying mechanism remains unclear. DACH1 is an important regulator of kidney functions. Herein, we investigated the roles of DACH1 in PA-induced kidney injury.</p><p><strong>Methods: </strong>Clinical data from the NHANES database were subjected to analyse the association between serum PA (sPA), blood glucose and kidney function. Molecular docking of PA was performed with DACH1. Immunohistochemistry, cell viability, annexin V/7-AAD double staining, TUNEL assay, immunofluorescent staining, autophagic flux analysis, qRT-PCR and western blot were performed.</p><p><strong>Results: </strong>Clinical data confirmed that sPA was increased significantly in the pathoglycemia individuals compared with controls and correlated negatively with renal function. Our findings suggested that PA could dock with DACH1. DACH1 enhances cell viability by inhibiting apoptosis and attenuating autophagy blockage induced by PA. Furthermore, the results demonstrated that DACH1 ameliorated inflammation and fibrosis through TLR4/MyD88/NF-κB and TGF-β/Smad signalling pathway in PA-treated renal tubular epithelial cell line (HK-2).</p><p><strong>Conclusions: </strong>This study proved that sPA presents a risk factor for kidney injuries and DACH1 might serve as a protective target against renal function deterioration in diabetic patients.</p>","PeriodicalId":48802,"journal":{"name":"Journal of Endocrinological Investigation","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinological Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40618-023-02253-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Palmitic acid (PA), the major saturated fatty acid in the blood, often induces the initiation and progression of diabetic kidney disease (DKD). However, the underlying mechanism remains unclear. DACH1 is an important regulator of kidney functions. Herein, we investigated the roles of DACH1 in PA-induced kidney injury.
Methods: Clinical data from the NHANES database were subjected to analyse the association between serum PA (sPA), blood glucose and kidney function. Molecular docking of PA was performed with DACH1. Immunohistochemistry, cell viability, annexin V/7-AAD double staining, TUNEL assay, immunofluorescent staining, autophagic flux analysis, qRT-PCR and western blot were performed.
Results: Clinical data confirmed that sPA was increased significantly in the pathoglycemia individuals compared with controls and correlated negatively with renal function. Our findings suggested that PA could dock with DACH1. DACH1 enhances cell viability by inhibiting apoptosis and attenuating autophagy blockage induced by PA. Furthermore, the results demonstrated that DACH1 ameliorated inflammation and fibrosis through TLR4/MyD88/NF-κB and TGF-β/Smad signalling pathway in PA-treated renal tubular epithelial cell line (HK-2).
Conclusions: This study proved that sPA presents a risk factor for kidney injuries and DACH1 might serve as a protective target against renal function deterioration in diabetic patients.
期刊介绍:
The Journal of Endocrinological Investigation is a well-established, e-only endocrine journal founded 36 years ago in 1978. It is the official journal of the Italian Society of Endocrinology (SIE), established in 1964. Other Italian societies in the endocrinology and metabolism field are affiliated to the journal: Italian Society of Andrology and Sexual Medicine, Italian Society of Obesity, Italian Society of Pediatric Endocrinology and Diabetology, Clinical Endocrinologists’ Association, Thyroid Association, Endocrine Surgical Units Association, Italian Society of Pharmacology.