Muhammad Farhan, Zahir Shah, Rashid Jan, Saeed Islam, Mansoor H Alshehri, Zhi Ling
{"title":"A fractional modeling approach for the transmission dynamics of measles with double-dose vaccination.","authors":"Muhammad Farhan, Zahir Shah, Rashid Jan, Saeed Islam, Mansoor H Alshehri, Zhi Ling","doi":"10.1080/10255842.2023.2297171","DOIUrl":null,"url":null,"abstract":"<p><p>Measles, a member of the Paramyxoviridae family and the Morbillivirus genus, is an infectious disease caused by the measles virus that is extremely contagious and can be prevented through vaccination. When a person with the measles coughs or sneezes, the virus is disseminated by respiratory droplets. Normally, the appearance of measles symptoms takes 10-14 d following viral exposure. Conjunctivitis, a high temperature, a cough, a runny nose, and a distinctive rash are some of the symptoms. Despite the measles vaccination being available, it is still widespread worldwide. To eradicate measles, the Reproduction Number (i.e. <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></mrow><mo><</mo><mn>1</mn></mrow></math>) must remain less than unity. This study examines a <i>SEIVR</i> compartmental model in the caputo sense using a double dose of vaccine to simulate the measles outbreak. The reproduction number <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></mrow></mrow></math> and model properties are both thoroughly examined. Both the local and global stabilities of the proposed model are determined for <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></mrow></mrow></math> less and greater than 1. To achieve the model's global stability, the Lyapunov function is used while the existence and uniqueness of the proposed model are demonstrated In addition to the calculated and fitted biological parameters, the forward sensitivity indices for <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></mrow></mrow></math> are also obtained. Simulations of the proposed fractional order (FO) caputo model are performed in order to analyse their graphical representations and the significance of FO derivatives to illustrate how our theoretical findings have an impact. The graphical results show that the measles outbreak is reduced by increasing vaccine dosage rates.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"511-528"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2297171","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Measles, a member of the Paramyxoviridae family and the Morbillivirus genus, is an infectious disease caused by the measles virus that is extremely contagious and can be prevented through vaccination. When a person with the measles coughs or sneezes, the virus is disseminated by respiratory droplets. Normally, the appearance of measles symptoms takes 10-14 d following viral exposure. Conjunctivitis, a high temperature, a cough, a runny nose, and a distinctive rash are some of the symptoms. Despite the measles vaccination being available, it is still widespread worldwide. To eradicate measles, the Reproduction Number (i.e. ) must remain less than unity. This study examines a SEIVR compartmental model in the caputo sense using a double dose of vaccine to simulate the measles outbreak. The reproduction number and model properties are both thoroughly examined. Both the local and global stabilities of the proposed model are determined for less and greater than 1. To achieve the model's global stability, the Lyapunov function is used while the existence and uniqueness of the proposed model are demonstrated In addition to the calculated and fitted biological parameters, the forward sensitivity indices for are also obtained. Simulations of the proposed fractional order (FO) caputo model are performed in order to analyse their graphical representations and the significance of FO derivatives to illustrate how our theoretical findings have an impact. The graphical results show that the measles outbreak is reduced by increasing vaccine dosage rates.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.