An Optimization of UAV-Based Remote Monitoring for Improving Wildfire Response in Power Systems

IF 3.3 Q3 ENERGY & FUELS IEEE Open Access Journal of Power and Energy Pub Date : 2023-11-28 DOI:10.1109/OAJPE.2023.3337760
Amarachi Umunnakwe;Katherine Davis
{"title":"An Optimization of UAV-Based Remote Monitoring for Improving Wildfire Response in Power Systems","authors":"Amarachi Umunnakwe;Katherine Davis","doi":"10.1109/OAJPE.2023.3337760","DOIUrl":null,"url":null,"abstract":"Wildfires lead to colossal losses on territory, local, state and federal levels, affecting critical infrastructure, the economy, decarbonization goals, social sustainability and more. Although wildfire impacts highlight the urgent need for resilience-comprehensive methods in power system wildfire response, existing techniques often focus on a single phase, usually wildfire progression. In this work, a comprehensive approach is proposed to provide optimal and real-time information toward mitigating wildfire risk in all resilience phases, necessary to decompartmentalize wildfire response. This paper focuses on the optimal routing of the remote monitoring resources for a self-sufficient low-cost wildfire mitigation model (SL-PWR), which utilizes predicted spatio-temporal wildfire probability maps of the utility service area and optimized unmanned aerial vehicle (UAV) monitoring trees to obtain input images for training the SL-PWR modules. Results show that optimizing the SL-PWR’s UAV monitoring using predicted wildfire threat parameters can improve situational awareness and rapidity of detection during wildfire incidents.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"10 ","pages":"678-688"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10332162","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10332162/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Wildfires lead to colossal losses on territory, local, state and federal levels, affecting critical infrastructure, the economy, decarbonization goals, social sustainability and more. Although wildfire impacts highlight the urgent need for resilience-comprehensive methods in power system wildfire response, existing techniques often focus on a single phase, usually wildfire progression. In this work, a comprehensive approach is proposed to provide optimal and real-time information toward mitigating wildfire risk in all resilience phases, necessary to decompartmentalize wildfire response. This paper focuses on the optimal routing of the remote monitoring resources for a self-sufficient low-cost wildfire mitigation model (SL-PWR), which utilizes predicted spatio-temporal wildfire probability maps of the utility service area and optimized unmanned aerial vehicle (UAV) monitoring trees to obtain input images for training the SL-PWR modules. Results show that optimizing the SL-PWR’s UAV monitoring using predicted wildfire threat parameters can improve situational awareness and rapidity of detection during wildfire incidents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化基于无人机的远程监控,提高电力系统的野火响应能力
野火会给地区、地方、州和联邦造成巨大损失,影响关键基础设施、经济、去碳化目标、社会可持续性等。尽管野火的影响凸显了电力系统野火响应中对复原力综合方法的迫切需求,但现有技术通常只关注单一阶段,通常是野火蔓延阶段。本文提出了一种综合方法,可在所有恢复阶段提供最佳和实时信息,以降低野火风险,这是将野火响应分块化的必要条件。本文的重点是为自给自足的低成本野火缓解模型(SL-PWR)优化远程监控资源的路由,该模型利用预测的公用事业服务区时空野火概率图和优化的无人机(UAV)监控树获取输入图像,用于训练 SL-PWR 模块。结果表明,利用预测的野火威胁参数优化 SL-PWR 的无人飞行器监测,可以提高野火事件中的态势感知能力和探测速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
期刊最新文献
Advancing Coherent Power Grid Partitioning: A Review Embracing Machine and Deep Learning Information for authors Synergistic Meta-Heuristic Adaptive Real-Time Power System Stabilizer (SMART-PSS) IEEE Open Access Journal of Power and Energy Publication Information 2025 Index IEEE Open Access Journal of Power and Energy Vol. 11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1